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Abstract 

Multiple representations of function have provided the foundation for a variety of mathematics 

curricula and novel technology-based learning environments that illustrate the rich conceptual 

linkages among symbols, graphs, tables and situations. This paper presents a designed learning 

environment intended to build on the affordances of representations as tools for both reasoning 

and communication. The design assigns unique representations to each member of a group in 

order to engage students in learning about the relationships among multiple representations as 

they work together on a shared task. By analyzing two teams of students working together in this 

environment over several weeks, we sought to understand the conditions for success in designs 

for collaboration with multiple representations. To that end, we pursued two research questions: 

1) How do the developing problem-solving strategies of groups draw on various elements in a 

distributed array of function and problem representations? 2) How do learners work together to 

establish ways of interpreting multiple and distributed representational tools as they develop and 

enact collaborative strategies? Over the course of several extended problem-solving sessions, 

each group developed several successive alignments of participants and representations as they 

learned to solve increasingly difficult tasks. Our findings highlight the emergent and often 

unexpected meanings that learners established for representational tools as their groups 

reorganized into increasingly effective problem-solving ensembles. We note some promise and 

also several challenges in the orchestration of collaborative student interactions with multiple 

representations. Regarding the promise, our findings echo those of prior research regarding 

learners’ considerable competence and creativity in interpreting and applying distributed 

representational tools, as well as the careful coordination among learners involved in establishing 

and acting on those interpretations. Challenges in this design space include instances in our data 
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where students capitalized on connections among representations without really trying to 

understand those connections, temporarily undermined the distributed character of the 

representations by working together on one representation, and worked more efficiently by 

reducing the number of participants actively involved in breaking codes. Our findings indicate 

that managing these challenges requires presenting student groups with regular opportunities to 

reconsider and reorganize their roles, and to experiment with different meanings and uses of 

flexible tools in the context of tasks with carefully sequenced levels of difficulty. 
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INTRODUCTION 

Computers and graphing calculators have been widely heralded for their potential to support 

student learning by linking multiple representations of mathematical problems, relationships and 

phenomena (Kaput, 1992). Keeping pace with these innovations, new mathematics software, 

curricular materials and instructional approaches emphasizing multiple representations have 

proliferated in recent decades (see, for example, Burrill, 1992; Fey, 1989; Kaput, 1989; 

Moschkovich, Schoenfeld & Arcavi, 1993; Pea, 1987; Roschelle, Pea, Hoadley, Gordin, & 

Means, 2000; Yerushalmy & Shternberg, 2001). Likewise, recent practitioner literature in 

mathematics education is rich with examples of ways multiple representations might serve as 

resources for supporting students’ conceptual understanding (e.g., Clement, 2004; Tripathi, 

2008), transforming teaching practices (Rider, 2007), promoting equitable instruction and 

incorporation of multiple learning styles (Lesser, 2000), developing students’ use of 

mathematical language (Herbel-Eisenmann, 2002), and structuring cooperative learning activities 

(Cleaves, 2008). 

But the very richness and variety of these environments and activities and the representations 

they comprise make the nature and the distinct promise of learning in such settings difficult to 

specify. As Kaput (1998) observed, the subject of representations in mathematics education “is 

notorious for its complexity and its subtlety because it seems to connect to everything we want to 

know or study” (p. 266). External representations such as graphs, tables and symbolic 

expressions are fundamental tools of mathematical activity, providing both conceptual resources 

for organizing and analyzing information in problem-solving processes, and social resources for 

communicating ideas and coordinating interaction. And representations never stand alone; the 

utility of a representation rests precisely in its capacity to establish and to capitalize on relations 
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and correspondences among multiple elements in a system of meaning (Goldin & Shteingold, 

2001). Moreover, the emergence of computational media has made possible not only a wide 

array of novel representational forms, but also new ways of communicative sharing and 

establishing of connections among representations (Roschelle, 1996). So the study of 

representations is inevitably the study of semiotic linkages: between representing sign and 

represented referent, between different representations of a common phenomenon, between 

different representational media, between participants in representation-mediated activity. 

This paper investigates these representational linkages as they emerge in the context of a 

novel learning environment. In particular, we explore the reciprocal relations between multiple 

representations and multiple learners in a design for collaborative classroom problem solving. As 

an instance of design research (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003), this paper 

seeks to engage intersections between learning theory and learning environment design. We 

introduce a learning environment with properties designed to serve collaborative learning with 

multiple linked representations. We consider the ways that multiple linked representations might 

serve as resources for organizing collaboration, and how collaboration with multiple linked 

representations might occasion new insights into forms of reasoning and interaction mediated by 

representational tools. We begin by considering key perspectives on representation and multiple 

representations in learning and then present a design for a learning environment that seeks to 

integrate insights from those different perspectives, in particular by linking multiple 

representations of a mathematical function across the devices of multiple students through a 

classroom network of wireless handheld computers. We then report on a study that investigated 

the ways in which this design for multiple linked devices and representations supported students’ 

strategic engagement with and collaborative participation in mathematics problem solving tasks. 
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We document the ways learners appropriated that design in practice, and then consider the 

implications for uses of socio-technical systems such as these for fostering mathematical 

learning. 

Reasoning and Interacting with Multiple Representational Tools 

The practices of mathematical reasoning are replete with representational artifacts such as 

symbols, equations, graphs, tables, and diagrams. These artifacts are representations in the sense 

that they stand in for something else: a set of abstract objects or real-world phenomena, aspects 

of those phenomena, or relationships among objects. Representations, then, pair a 

representational artifact with a represented referent through some convention or interpretation 

that establishes the mapping between the two. Peirce, in his pioneering theory of representations 

(or “signs”: see Peirce et al., Collected Papers, 1935), terms this determination of relations 

between sign/representation and object/referent an “interpretant,” the third part in the triadic 

model of a semiotic system. Becoming familiar with conventions for interpreting, applying and 

reproducing standard representational forms such as algebraic expressions and Cartesian graphs, 

as well as practicing the construction of new or nonstandard ways to represent ideas and 

information, are each fundamental aspects of learning mathematics (Greeno & Hall, 1997).  

A given mathematical idea can be represented in a variety of modes; different representations 

of the same phenomenon can highlight different features or characteristics, and so provide 

distinct conceptual resources and problem-solving affordances in the context of a particular task 

(Ainsworth, 1999; Larkin & Simon, 1987; Parnafes & DiSessa, 2004). Learning to represent the 

same concept in different ways, and to move fluently between multiple representational modes, 

is thus an important element of representational fluency; the National Council of Teachers of 

Mathematics (NCTM) Representation standard, for example, stresses the importance of 
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opportunities for students to “select, apply, and translate among mathematical representations” 

(NCTM, 2000). Representational fluency in reasoning is a more general hallmark of expertise in 

many content domains beyond mathematics, such as the sciences (National Research Council, 

2000). A wide variety of computer- and handheld-calculator-based instructional tools developed 

over the last two decades have been aimed at providing those opportunities by dynamically 

linking several representations so that changes made to one propagate corresponding changes in 

the others. These linked multiple representations and technologies for their simultaneous display 

have been particularly important in the study of functions, and in a number of instructional 

approaches to algebra and to the secondary curriculum in which functions play a central and 

organizing role (Kaput, 1992; see Kieran & Yerushalmy, 2004). The same functional 

relationship can be readily expressed through an algebraic equation, a Cartesian graph, a table of 

numerical values, a set of ordered pairs, or a written or verbal description (Kaput, 1989; 

Moschkovich et al., 1993; Yerushalmy, 2006).  

Despite the apparent promise of engaging students with multiple representations, early 

studies indicated the troubles students may have in making connections between different 

representational modes, particularly the symbolic and the graphical, even after considerable 

experience with computer-based learning environments which dynamically link these function 

representations (Schoenfeld, Smith, & Arcavi, 1993; Yerushalmy, 1991). Learners' difficulties 

reveal fundamental challenges in making sense of multiple representations of a function. 

Although educators may believe that they simply ‘perceive’ the same function to be at once 

represented by a table and a graph, a student viewing those same linked representations has to 

learn those equivalences, and may thus not recognize the continuity of that mathematical 

function across its different representational modes (Thompson & Sfard, 1994). 
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On the other hand, learners’ difficulties in translating among different representations may 

reflect the challenges associated with making sense of any of the single function representations. 

For example, research on students’ learning about symbolic expressions (e.g. Kieran, 1992) and 

graphs (e.g. Leinhardt, Zaslavsky & Stein, 1990) has documented the considerable complexity 

posed to introductory algebra students by each of these representational modes. Evidence of 

learners’ difficulties in making standard interpretations of canonical representational forms or the 

links among multiple representational modes may thus reveal far less about the effectiveness of a 

learning environment or any learner deficiencies than it does about the significant interpretive 

work required to establish the meaning of any mathematical representation (Lee & Sherin, 2006). 

A growing body of research indicates that learners bring considerable capabilities for building 

and reasoning with representations into instructional settings (e.g. diSessa, Hammer, Sherin & 

Kolpakowski, 1991; Enyedy, 2005; Izsak, 2003; Sherin, 2000). These studies outline a 

framework for understanding and nurturing students’ “metarepresentational competence” 

(diSessa, 2004)—their capacities for such activities as creating, critiquing, comparing or quickly 

learning new representations. Armed with these insights, the critical question is not why students 

struggle to translate among standard representations or to perceive the function they 

simultaneously represent, but rather how or through what processes they come to construct 

meaning for and relations among those representations. 

In a similar vein, Greeno and Hall (1997) assert that instruction in mathematics and science 

should emphasize not learners’ familiarity with standard representational forms, but rather 

opportunities to engage in forms of representational practice. They argue for a perspective on 

representational artifacts as tools not only for solo reasoning about phenomena, but also for 

expressing ideas and communicating information in collective activity and social interactions. 
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Along these lines, a number of recent studies have demonstrated the importance and the utility of 

examining representations not as abstract objects, but as material elements of dynamic cultural 

practice and mediators of social interaction (e.g. Cobb, 2002; Danish & Enyedy, 2006; Hall, 

1996; Hall, Stevens & Torralba, 2002; Latour & Woolgar, 1986; Meira, 1998). Representational 

artifacts serve as resources not only for solving problems, but also for coordinating interaction 

and interpretation (Pea, 1992; Roschelle, 1992; Woolgar, 1990), communicating ideas (Greeno 

& Hall, 1997; Pea, 1994) and orchestrating complex tasks across distributed networks of 

participants and material resources (Hutchins, 1995). 

Focusing on the representational practices and competencies of learners as they struggle with 

expressing mathematical ideas and relationships in communicative situations exemplifies a 

different theoretical stance than presuming their increasingly accurate uptake of canonical 

representations and conventional interpretations with instruction. Such analytic emphasis also 

draws attention to the ways that meaning of diagrams, tables and other displays is established 

through socially-situated efforts to reason with and to interact through artifacts, rather than 

through apprehending self-evident semantic properties of those artifacts. Accordingly, some 

authors eschew the word ‘representation’ altogether when discussing graphs, charts, symbolic 

equations and other markings displayed on paper, computer screens and other media—instead 

referring to them as ‘inscriptions’—to emphasize their material rather than representational 

properties (Latour, 1990; Pea, 1993; Roth & McGinn, 1998). The meaning of an inscription is 

not a stable property of an abstract object, but rather evolves over time and in relation to 

emergent goals, problem-solving processes and interactions (Meira, 1995). When faced with a 

mathematical problem, an individual learner works to make sense of the situation by establishing 

the meaning of representations as tools for supporting his or her reasoning. In the same way, 
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participants in a discourse create and interpret representations in order to establish their functions 

as tools for coordinating their social processes and collaborative reasoning. 

This account of representational meaning as provisionally established through practices of 

reasoning in interaction—rather than being ‘read off’ as self-evident properties of inscriptions—

entails a corresponding critique of how multiple linked representations come to ‘mean’. Roth and 

McGinn thus argue that “any relationship between inscriptions…holds because of agreed upon 

practices, not because of an a priori ontological identity between two inscriptions” (1998, p. 42). 

Even the meanings of standard representational modes and the links between them are cultural 

artifacts produced through long histories of collective practice and re-established in each new use 

(Sfard, 2008). In order for different representations of a specific mathematical function to be 

meaningful in relation to one another, the computer-mediated links between displays of 

symbolic, graphical and tabular representations must be complemented by interpretive links that 

are established and maintained through a group’s collective activity and/or constructed by 

individuals. 

Of course, though learners may not apprehend their relations as such, the linked displays on a 

graphing calculator or computer do represent the same function in a pragmatic sense: when a 

user changes an algebraic expression, the graphical and tabular displays also change. As Kaput 

(1992, 1995) says, they are ‘yoked’. That such representations are considered to be yoked is, 

however, not tied only to the production or interpretation of an inscription during a learning 

activity, but to a broader set of mathematical conventions, established over generations and now 

encapsulated in artifacts such as computational devices. Learners must be familiarized with those 

representational conventions so that they may participate in mathematical practices that presume 

the semantic mappings between the inscriptions across these different representational modes. 
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The intent of the learning environment designer—to make these mappings evident in the 

connected changing states of the inscriptions—is not directly perceivable by the learner, but will 

require interpretive work on the part of the learners and the teachers fostering the learning 

conversations around these representations (Roschelle, 1996). In recognition of these interpretive 

realities, we will continue to use the terms 'representations' and 'representational tools' rather than 

'inscriptions' to foreground our goal that students learn conventional correspondences across 

different representational modes. 

A focus on representational practices and interactions thus suggests shifting focus from the 

mathematical object common to a network of multiple linked representations, to the meaning for 

representational tools constructed or enacted through the reasoning processes of learners, and 

jointly negotiated through interactions among multiple participants in collective and 

collaborative processes. Our analysis accordingly seeks to examine the forms of reasoning and 

interaction through which learner groups interpret a set of dynamically linked function displays 

and other representational tools as they develop collaborative problem-solving strategies. In the 

next section we outline a design framework for supporting and investigating student 

collaboration with multiple representations, namely by situating linked representations of a 

common function in a distributed network of participants, devices and representational tools 

bound together by a shared task. 

Linking Multiple and Distributed Representations in a Collaborative Task 

The designed environment presented in this paper seeks to capitalize on the links among 

multiple representations in creating contexts for collaborative learning. Learners are provided 

with a variety of representational tools (described below) linked by a network of devices, and 

asked to use those tools together in order to develop strategies and actions for solving a 
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collective task. Thompson (1994) argues for the design of learning environments that focus not 

on functions as abstract objects that learners may or may not construct through engagement with 

their multiple representations, but rather on aspects of specific situations which students might 

themselves be able to represent, and learn to recognize across different forms of representational 

activity. Kaput (1998) likewise stresses the importance of connecting linked function 

representations to multiple descriptions of real situations. The approach of this design study 

similarly seeks to support learners’ efforts to interpret linked equations, graphs and tables by 

providing opportunities to make those displays meaningful as tools in relation to a specific 

problem context, in this case decrypting ciphertexts. In order to develop a framework for 

conceptualizing a system of several artifacts jointly engaged by multiple participants we will 

consider multiple linked representations in relation to a very different plural notion of 

‘representations’: distributed representations coordinated in the accomplishment of a task. 

Distributed representations are elements in a cognitive system that may include both internal 

representations associated with individuals in that system, and external representations (Zhang & 

Norman, 1994). While multiple linked representations are bound together by a common referent, 

distributed representations are united by their shared relevance to a common task. And while 

analyses of learning with multiple linked representations are generally oriented toward an 

individual learner who simultaneously engages those different representational modes, a 

distributed cognition perspective shifts our analytic attention to consideration of multiple 

participants as well as multiple representations. For example, in Hutchins’ (1993, 1995) accounts 

of the coordinated activity of groups of people and tools guiding large ships, the computational 

work of navigation involves the propagation of representational states across an array of media 

linked to multiple actors. In order to determine the ship’s location at regular intervals over the 
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course of the journey, a team of navigators uses an array of tools to generate, translate, and 

reorganize a series of representations of their spatial relationship to known landmarks. A 

distributed account of the ways this team solves the problem of navigation involves expanding 

the unit of cognitive analysis beyond the mind of any individual in the system to include multiple 

social and material actors organized in relation to collective activity.   

The learning environment presented in this paper distinctively integrates a set of multiple 

linked function representations with a system of distributed representations of a problem, and 

allocates access to and control of this array of representational resources among several 

participants in a collaborative task. The intent behind this design is to simultaneously capitalize 

on the potential for multiple dynamically linked representations to provide students with multiple 

views of mathematical relationships, and for a distributed array of representational tools to draw 

an array of learners together to make shared meaning of those representations in relation to 

collaborative activity. 

Beyond providing a framework for analyzing the ways individuals work in concert with one 

another and with features of their environments toward the accomplishment of tasks, distributed 

cognition perspectives may also offer considerable utility for conceptualizing designs for 

collaborative learning (e.g., Stahl, 2006). Collaborative tasks are likely to be most effective when 

they are sufficiently open-ended and complex to necessitate contributions from each member of 

a group (Cohen, 1994), and when participants engage the task and one another in ways that 

sustain their diverse contributions (Barron, 2003)—in other words, when circumstances both 

allow for and encourage the assemblage of students to truly function as a group. The design 

presented in this paper thus seeks to employ a distributed network of participants and 
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representational artifacts in problem-solving tasks that necessitate their joint interpretive efforts 

to turn those representational artifacts into their problem-solving tools. 

Critiques of distributed cognition theory (e.g. Bereiter, 2002; Cobb, 1998) worry that 

extending accounts of the collective capacity of an ensemble of material and social actors into 

classroom settings may lead to an impoverished account of what we know about individual 

learners. And as Schwartz & Martin (2006) note, most work on distributed cognition to date has 

fallen short of attending to distributed learning—the extent to which distributed cognitive 

systems of individuals and their material or social environments adapt, change or reorganize 

themselves over time. Our intent in adopting a distributed perspective is to enrich rather than 

replace an account of individual learners’ interpretive activity with representational tools. Our 

analysis below therefore seeks to characterize learning in terms of the dialectical relations 

between the adaptive reconfigurations of a group and the interpretive efforts of individual 

participants (cf. Cobb, 1999; Enyedy, 2003). This approach calls for a dual focus—on the 

distributed array of learners and displays as analytic unit for examining the development of 

strategies for solving decryption problems, and on the efforts of participants to establish 

individual and shared interpretations of representational tools that support those strategies. 

To that end, this study addresses two central research questions: 

1) How do the developing problem-solving strategies of groups draw on various elements in 

a distributed array of function and problem representations? 

2) How do learners work together to establish ways of interpreting multiple and distributed 

representational tools as they develop and enact collaborative strategies? 
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THE CODE BREAKER LEARNING ENVIRONMENT 

This paper draws on data from a classroom design experiment in which students used a 

variety of representational tools to solve collaborative problem-solving tasks. Those tasks formed 

the heart of a curricular unit titled “Code It!” and set in the applied context of cryptography2. 

This unit sought to introduce the topic of mathematical functions and support students’ 

developing fluency with a variety of representational tools, as defined below. Students were 

asked to imagine themselves as cryptanalysts, and to collaborate with the other members of their 

small group on daily problem-solving activities as they attempted to break codes that the teacher 

or other student groups had created using algebraic expressions. The tasks were organized 

around uses of mathematical functions as substitution ciphers—codes that assigned each letter in 

a plaintext message to its ordinal alphabetic value between 1 and 26, and then mapped that value 

through a polynomial function to produce its corresponding output value in a numerical 

ciphertext alphabet. Groups were presented with a succession of messages that had been 

encrypted in this way, and charged with determining the unknown function (“breaking the code”) 

used to encode each in order to decipher it. 

Each student was equipped with a handheld computer running a software application called 

Code Breaker. That application provided students with what we will call representational 

                                                
2 Code It! was an adaptation of the "Codes Inc." curriculum unit originally developed at the Institute for Research in 
Learning by Goldman, Greeno and colleagues in MMAP (Middle School Math through Applications Project) to 
provide a slice of the real world chosen to engage young people in mathematics (Greeno et al., 1999), in this case 
having students role-play cryptologists designing and testing codes for clients. Their curriculum used code making 
and code breaking as a vehicle for teaching algebraic functions. For the Codes Inc. unit, students used software 
running on desktop PCs to create and break codes, and passed coded messages to each other via e-mail. When the 
second author wished to develop a classroom network employing handheld wireless computers for collaborative 
math learning, he sought out Goldman's collaboration to re-design the activities so as to support collaborating 
groups to compete with one another in creating and breaking codes (see Goldman, Pea & Maldonado, 2004; 
Goldman, Pea, Maldonado, Martin & White, 2004 for design rationale and preliminary accounts of this 
intervention). We thus adapted the Codes Inc. unit for small group collaborative learning using handheld wireless 
PocketPCs. In this new Code Breaker system, handheld devices communicated with each other via a classroom-
based server computer, rather than directly, and different representations of candidate functions were updated 
dynamically on the handheld displays of each group member, unlike the original Codes Inc. design. 
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tools—an array of different displays featuring information about the encrypted text, and a set of 

dynamically linked representations using different representational modes of a candidate solution 

function generated by a student group using the application. The static ciphertext displays 

together made up a distributed array of representations of the problem: each highlighted different 

characteristics of the encrypted message and the numerical characters it comprised, and thus 

provided different potential clues about the unknown encoding function. The linked displays 

representing the function formed a set of multiple representations of a candidate solution: they 

showed algebraic, graphical and tabular views of a given mapping between the plaintext alphabet 

and a corresponding set of possible ciphertext values. The problem-solving process for learner 

groups involved seeking ways to align these different problem and solution displays so as to 

make inferences about the parameters of the unknown encoding function for the ciphertext. 

Students used the Code Breaker tools to generate and to examine candidate encoding functions, 

and to compare the displays of each of these functions with the resulting characters in the 

ciphertext message to match one such candidate to the encoding function. 

A distinctive aspect of the socio-technical design of the collaborative Code Breaker software 

employed in this study was that the handheld devices were linked through a local wireless 

network such that students who were seated together in groups of four were assigned to a 

corresponding server-defined group (Figure 1). In consequence, changes to a function that was 

displayed on one student’s handheld automatically propagated to the devices used by members 

of that group. Though a single device could display only one or two of those linked 

representations at a time, a group could collectively examine the full array simultaneously by 

collectively interpreting the representations that were displayed on their set of devices. The 

activity design thus takes the form of a multiple representations ‘jigsaw’ (Aronson, 1978; 
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Cleaves, 2008); each group member was assigned responsibility for viewing one or two 

representations, and these responsibilities were rotated daily, with the intent of each student 

developing facility with each representational tool and a deeper understanding of its distinctive 

affordances for decrypting the ciphertext. In principle, each student could take any view; all the 

representations were stacked in a long viewing window through which students scrolled to their 

assigned function representational mode (e.g. graph, table). Students could and sometimes did 

view representations other than those assigned to them; these departures were in keeping with the 

open-ended nature of the task. The purpose of the assigned roles was not to rigidly structure the 

problem-solving process around a precise arrangement of representations, but rather to create a 

flexible network of social and technical linkages through which students could learn to select, 

combine, and coordinate representations as resources for analyzing functions and breaking 

codes. Whether this jigsaw-like role rotation would be reflected in how the learners organized 

their activities as a distributed reasoning system remained to be determined empirically. 

Representational Tools 

The Code Breaker software included four different dynamically linked representations of the 

candidate solution function: 1) an algebraic equation, 2) a graph, and two different tabular views: 

3) the function table, and 4) the inverse function table. Three other representational tools, the 5) 

ciphertext table, 6) frequency table, and 7) word frequency table, displayed static features of the 

encrypted message. In addition, two of these dynamic function displays, the graph and the 

inverse function table, also included information about the encoded ciphertext message. This 

overlap between some problem and solution representations was intended to support students’ 

efforts to interpret candidate function displays in relation to the encrypted message, and to 

highlight properties of the unknown encoding function. Figure 2 illustrates the relations among 
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the different Code Breaker representational tools—those that simultaneously displayed 

dynamically linked representations of the candidate function, those comprising a distributed 

system of representations of the encrypted message, and those that integrated problem and 

solution representations. The arrows in this figure indicate dependencies among these different 

displays, so that the curve displayed in the graph and the dynamic values in the function tables 

were generated from the algebraic candidate equation, while the characters and counts in the 

frequency tables, the vertical window dimensions of the graph, and the static values in the 

inverse function table were all determined by the original plaintext message and the encoding 

function which together produced the ciphertext. These various candidate solution function and 

ciphertext displays are each described below. 

[Insert Figure 2 about here] 

1. The Candidate Function Equation. One student in each group was assigned responsibility 

for viewing and manipulating a symbolic expression for the candidate function. Encoding and 

candidate functions were of the form y=axb+c, where c could be any integer, a any nonzero 

integer, and b could equal one, two, or three.3 Candidate parameters were adjusted from their 

default settings (a=1, b=1, c=0) by tapping with a stylus on either the top or the bottom half of 

the number on the handheld screen, causing the value to increment or decrement by one unit. In 

order to break a code, groups needed to correctly determine these three parameters of an 

unknown encoding function and enter them in the candidate display. 

2. The Graph. The Code Breaker graph (Figure 2) displayed the candidate function curve in a 

window scaled in accordance with the encoding function. The x-axis of the graphing window 

                                                
3 In addition to the polynomial mapping, some codes also featured an “offset.” Offsets shifted the relationship 
between the letters of the alphabet and their ordinal values, so that while an offset of zero meant that A was 
associated with an input value of one, an offset of one associated A with an input of 2, B with 3, and so on, 
including associating Z with 1. Codes featuring offsets were introduced approximately halfway through the three-
week series of decryption activities, as part of an effort to steadily increase the difficulty of the tasks. 
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was always fixed to the alphabetic domain, spanning from zero to twenty-six. The y-axis, on the 

other hand, adjusted automatically around the range of values included in the ciphertext message. 

Each of those ciphertext values was also represented in the graph by a horizontal line stretching 

from the y-axis until it intersects the candidate curve. A corresponding vertical line, drawn from 

this intersection to the x-axis, reflected the mapping of the ciphertext value through the inverse 

of the candidate function. 

3. The Function Table. At different stages of the study, the Code Breaker software featured 

two different table displays dynamically linked to the candidate function. The function table 

(Figure 2) paired a static X-column, displaying the numbers one through twenty-six, with a 

dynamic Y-column that updated with each adjustment of the candidate function to show the new 

output value to which that polynomial function would map each of the X-values. 

4. The Inverse Function Table. The inverse function table mapped the range of ciphertext 

values in an encrypted message, shown in the Y-column of Figure 3a, through the inverse of the 

current candidate function (y=17x-29), with the result displayed in the corresponding cell of the 

X-column. When this process yielded an integer from one to twenty-six, the corresponding 

plaintext letter appeared in the “Letter” column. 

The version of Code Breaker implemented at the outset of this study featured an overlooked 

software bug with significant implications for the behavior of the inverse function table, and for 

the cases presented below4. This tool contained an additional feature intended to round to 

integers values that were nearly but not exactly integral in order to signal to students that they 

were getting close to a letter match for cases of quadratic and cubic functions with large 

parameter values. In fact, the bug caused the table to include all non-integer values with a 

                                                
4 For a more detailed recounting of the inverse function table, its bug, the insights it occasioned, and the reasons for 
its replacement, see Author (2008). 



Distributed by Design 
 

20 

greatest integral part between 1 and 26. In linear cases where the coefficient of the candidate 

function was greater than that of the encoding function, the table displayed multiple ciphertext 

values mapped to the same letter. Figure 3b reveals what the ‘buggy’ table actually displayed, 

given the code and candidate functions from Figure 3a. After the discovery of this bug during the 

first week of decryption activities, the inverse function table was replaced by the function table. 

[Insert Figures 3a and b about here] 

5. The Coded Text. The first of the static problem representations  (i.e., those which are 

unchanging even as the candidate solution functions are changing) featured the ciphertext 

message itself5. This display showed a series of numbers comprising the encoded letters of the 

encrypted message, with spaces between numbers bounding each letter and brackets around 

strings of numbers to demarcate words (Figure 2). 

6. The Character Frequency Table. The Character Frequency Table was composed of three 

columns. The Y-column displayed all the numbers that appeared in the ciphertext of the 

currently encrypted message. The “Count” column specified the number of times that each of 

those ciphertext values appeared in the coded message. As with the function and inverse function 

tables, these columns were divided in half, with the two halves placed side-by-side to save screen 

space. The table was sorted according to the count, from least to most frequent, rather than 

according to the relative numerical values of the ciphertext characters in the Y-column6.  

7. The Word Frequency Table. Similarly, the word frequency table displayed the number of 

occurrences of each word in the ciphertext (Figure 2). As in the Coded Text, the words in the 

encrypted message were displayed as strings of numbers, with spaces around each distinct 
                                                
5 Hereafter, we use “Coded Text” to refer to this representation in the Code Breaker software, and “ciphertext” to 
refer to the actual encrypted text message or the set of numerical characters it includes. 
6 The X-column shown in figure 6 was added after the removal of the buggy inverse function table, and retained 
some of the same functionality, displaying a value whenever the inverse of the current candidate mapped a 
ciphertext value to an integer between 1 and 26. 
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number to identify letters and brackets around each sequence of numbers that comprises an 

encoded word. Each such word was listed singly on a line of the “Word” column in the table, and 

the number of times that word appeared in the message was displayed to the right in the “Count” 

column. 

Decryption Strategies 

Strategies for breaking codes generally involved establishing interpretive links between 

candidate function and problem representations. Those links might be made in either direction—

from the variation of candidate function parameters to the examination of the resulting curves or 

values in comparison to those in the ciphertext, or from examination of ciphertext-based displays 

to inferences about possible candidate function parameters. The first path involves using the 

linked function representations to examine how a given candidate maps the plaintext alphabet in 

relation to the set of ciphertext values—how well the graph ‘fits’ the adjusted window by 

spanning the domain and range specified by the plain and ciphertext sets respectively, or how the 

function table values compare to those in a ciphertext display. 

A second strategic approach might begin with the values in the ciphertext, and involve 

matching one or more of these with a corresponding plaintext letter to form an ordered pair. The 

intent behind the Code Breaker design was for student groups to use approaches of each kind 

iteratively and in combination. Doing so follows from the collaborative context and the 

networking of multiple devices, as different students in the group can be simultaneously engaged 

with different linked representational tools. Moreover, while these codes could in principle be 

broken using only analyses of the ciphertext displays, the candidate function representations 

were quite useful not only for determining the degree and often also the lead coefficient of the 

polynomial encoding function, but also as scaffolds for students who did not yet have the 
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familiarity with functions or the fluency with algebra to easily or successfully enact such 

analyses. 

METHOD 

Context and Participants  

The Code Breaker handheld environment was implemented with two middle school 

mathematics classes during a five-week summer school session during which students had 

lessons introducing the topic of functions, the evaluation of simple polynomial expressions, 

coordinate graphing, exponents, and function tables. Students were also introduced in the first 

two weeks to the history and key terminology of cryptography, the principles of substitution 

ciphers, and the mechanics of the handheld computer user interface. Students spent the rest of 

their time over the remaining three weeks collaborating in small groups to make and break codes. 

As they grew familiar with the different Code Breaker representational tools, students in each 

group were encouraged to work together to develop their own strategies for using those resources 

to solve increasingly challenging decryption problems. 

The focus of the summer program was on students’ preparation for introductory pre-algebra 

and algebra courses in the school year, with emphasis on their familiarity with polynomial terms 

and expressions, with coordinate graphs, and with numerical patterns and relationships. The 

integration of Code Breaker activities was intended to support students’ developing familiarity 

with a variety of representational resources as tools for examining functional relationships and 

solving problems. The learning environment aimed to present students with opportunities for 

reasoning with and making connections across different function representations, with an eye 

toward developing their fluency in interpreting and reasoning with representational tools, 

analyzing numerical patterns in the ciphertext set, and investigating functional relationships 
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represented by the codes. The extended analogy between codes and functions provided a context 

throughout the instructional unit for supporting students’ learning about both the relations 

between specific input and output values of a function—as generated by an algebraic rule, 

expressed numerically, and located graphically (as Cartesian ordered pairs), and the relations 

between input and output sets of values—the domain and range of the encoding function. A more 

focused examination of opportunities for learning about functions in this environment and 

through this extended analogy with cryptography is presented elsewhere (White, 2009). Briefly, 

that analysis found that groups’ different decryption strategies emphasized different aspects of 

function. While structural properties of functions were particularly salient in some strategies, 

other strategies relied on operational features of functions, and other approaches integrated 

elements of functions as both processes and objects; groups were able to determine encoding 

function parameters more precisely and break more challenging codes as they developed 

decryption strategies that reflected these alternative perspectives on functions. More detailed 

accounts of individual student learning outcomes in relation to the instructional unit are likewise 

reported elsewhere (White, 2005; 2006). The specific contribution of the present paper involves 

examining students’ activities with and developing interpretations of representational tools, 

particularly as resources for examining numerical patterns and relationships, and for solving 

problems collaboratively.  

The student population was highly diverse in terms of prior academic achievement. While 

some students were required to attend the summer program due to poor math performance during 

the prior school year, others were high-attaining students voluntarily participating in the course 

for enrichment. Collaborative groups were organized to reflect that diversity in prior 
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achievement; student assignments to their groups were based partly on a pretest score7, so that 

each group included students at a wide range of performance levels on that instrument, and partly 

on the observations of the teacher and researchers. Whenever possible, groups remained the 

same for the duration of the study. 

This paper analyzes the problem-solving work of two groups, comprised of four students 

each. A total of four groups from the two classes were selected to be videotaped during all small-

group activities for the duration of the study. These four groups were purposively selected 

according to several criteria, including the consent of all members to be videotaped and 

interviewed, and informal observations of their work during preliminary activities. Groups One 

and Two were selected from among the four focus groups for more detailed analysis because 

they were more often on-task than one of the remaining groups, and because their use of a wide 

variety of representational resources and decryption strategies during decoding activities was 

more readily observable from the video record than that of the other. Of those other two groups 

who were regularly videotaped, one featured a combination of absences and off-task 

disagreements and consequently struggled to work to collaboratively or to develop effective 

ways of using the Code Breaker tools. The fourth group performed similarly to Groups One and 

Two in terms of engaging in the activities and developing successful decryption strategies over 

the course of the unit, but did not discuss, debate or narrate their specific uses of different 

representational tools as often or as audibly. In contrast, each of Groups One and Two was 

clearly observed by both researchers and the teacher coming up with novel strategies or ways of 

using representational tools over the course of the unit and thus identified as being of particular 

interest for subsequent analysis. Thus we do not claim that the groups analyzed below were 
                                                
7 Topics on the pretest and an identical posttest included reading graphs and tables, evaluating arithmetic and simple 
algebraic expressions, solving linear equations, and vocabulary words related to functions, algebraic expressions and 
graphs. Focus group students’ results on these assessments are reported in White (2006). 
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typical of the larger sample, though their overall success in decryption activities and performance 

other classroom tasks was not exceptional. They were selected for their relative tendencies not 

only to work, but also to discuss that work with one another—thus providing the researchers with 

a wider window into their problem-solving processes than that of other groups. In this sense, we 

take them as exemplars of the kinds of activity by students at this grade level that might be 

possible to support in this learning environment, rather than indicative of the overall success with 

this iteration of the design in bringing about that kind of activity across all groups. 

Because gender was not a factor by which students were assigned to groups, there were some 

same and some mixed-gender groups among both the classes at large and the six focus groups; 

Group One was composed of four girls and Group Two of four boys. The varying levels of prior 

academic achievement among the students in each group are partly illustrated by their 

performances on the pretest. In Group One, Tina had the highest score in the class and Jessica 

both scored above the upper quartile, while Shirley and Monique both scored below the first 

quartile. In Group Two, CJ scored above the upper quartile, Vince above the median, and Reggie 

and Jason above the lower quartile. Tina was a rising 8th grader who had studied Algebra I 

during the previous year, while all other students in the two focus groups were rising 7th graders 

who had received regular 6th grade math instruction the prior year. 

Analytic Approach 

To characterize groups’ developing decryption strategies, and the use of representational 

tools on which those strategies relied, we examined all 32 problem-solving episodes undertaken 

by the two focus groups over the study’s final three weeks. These 2 to 30 minute decryption 

events began when a group downloaded a new code to break, and concluded when they either 

solved or stopped working on the code. Video records of each event were transcribed and 
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reviewed in detail. When applicable, server logs of student decoding activity, researchers’ notes, 

and students’ written records were also consulted to supplement the video data. 

Each decryption event was analyzed with regard to the ways students attempted to coordinate 

participants and representational tools in order to draw inferences about the solution function, 

what we call decryption strategies. In particular, we reconstructed the problem-solving processes 

enacted by each group in each event in terms of 1) the different displays examined by each 

participant, 2) their efforts to establish interpretive links between those displays, and 3) their 

efforts to determine parameter values of the unknown encoding function. We represented these 

group processes for each decryption event as a particular configuration of tools and participants 

corresponding to a subset of the representational tools and linkages depicted in Figure 2. In other 

words, the analysis of each decryption event included a diagram of the candidate function and 

ciphertext displays from which students sought to derive information about the encrypted 

message and inferences about the encoding function. However, whereas Figure 2 uses solid 

arrows to represent dependencies between these displays, the analytic diagrams use dashed 

arrows to represent instances in which students made inferences about candidate function 

parameters based on information in the specified representational tool(s) (see, for example, 

Figure 11 below). 

These depictions of decryption strategies provided a means to examine learning in this 

environment at the level of the distributed group, particularly as emergent and changing 

arrangements of participants and tools in relation to successive tasks. These different 

distributions of students and displays were then examined in terms of the ways they were 

supported by, and supportive of, students’ individual and collaborative efforts to reason with 

representational tools. In particular, we sought to identify instances in which groups adapted into 
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new alignments, and began to implement new strategies, especially those that they would go on 

to use repeatedly and with success. Below, we present several episodes that illustrate key 

problem-solving approaches and configurations of representations used by these two groups, and 

the moments and processes through which they emerged in each group’s work. In each case, we 

examine the ways that students worked to coordinate interpretations of Code Breaker displays, 

and to establish interpretive links between displays. 

Because students could and often did freely adjust the scroll position of the viewing window 

on their devices, the available data did not always provide a complete picture of the different 

displays students examined as they worked to complete decryption tasks. Students often made 

explicit reference to the display they viewed, or simply adhered to the view associated with their 

role assignment. However, there were also instances in which we relied on close scrutiny of the 

video record in order to track students’ scrolling adjustments in relation to the timing of a 

relevant observation, action or inference. In other instances, students’ views could be accurately 

reconstructed based on their reports of information that was only available in a particular view. 

Instances in which the particular display one or more students sought to interpret or use in a 

given set of utterances or actions could not be clearly inferred through these means were 

excluded from the analysis. 

RESULTS 

Tables 1 and 2 summarize the patterns among successive problem-solving strategies for each 

group. Over the course of three weeks, each group gradually moved from strategies for 

determining encoding function parameters that relied only on inferences from linked 

representations of the candidate function to those that involved establishing and capitalizing on 

links between representations of both the candidate function and the encrypted text. The 
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functions used to encode these messages generally grew more complex as each group progressed 

through the tasks, featuring gradual increases from first to third degree polynomial functions, and 

the eventual introduction of codes with offsets8. Group One’s first successful code breaking 

effort came in their third task; after that, they solved all but two of the tasks they undertook even 

as those grew increasingly difficult, including every task in which their decryption strategy 

included establishing interpretive links between representations of the candidate function and the 

ciphertext. Group Two successfully solved several codes based on relatively simple linear 

functions in Tasks 5-8 using only inferences from candidate function representations, but 

struggled thereafter until they developed an approach to linking candidate and ciphertext 

representations over their final three tasks. 

[Insert Tables 1 and 2 about here] 

Below, we present a series of episodes to illustrate the ways the two groups moved from 

strategies that relied exclusively on inferences from dynamically linked function representations 

to those in which they established interpretive links between candidate function and ciphertext 

representations. We examine the ways these changing distributions of participants and displays 

were enacted through students’ efforts to reason and interact with multiple and distributed 

representational tools. In episodes One through Four, we present a sequence of several events 

that highlight the interpretations of and the interactions with different displays through which 

Group One moved from problem-solving approaches that relied exclusively on candidate 

function representations and their display features, to ones that integrated ciphertext displays. In 

Episodes Five through Seven, we illustrate the strategic development of Group Two somewhat 

                                                
8 The groups each worked on some messages assigned by the teacher, and some encrypted by other groups within 
parameters established by the teacher for a given session (e.g. only linear encoding functions). Consequently, the 
respective series of codes attempted by the two groups were similar, though not identical. 
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more succinctly, and with an emphasis on contrasting features as they came to develop quite 

different ways of using these representational tools to break codes. 

Episode One 

This episode finds Group One engaged in their second day of decryption activities with the 

Code Breaker tools, and illustrates their early efforts to interpret and apply this array of 

representational resources. The code they sought to break had been encrypted with the function 

y=4x+7. Tina was responsible for editing the candidate function in this session, Jessica for 

examining the Inverse Function Table, and Shirley the Graph. Because of its proximity to the 

candidate function in the scrolling window, Tina could also see the graph on her own device. 

Monique, who was assigned the Frequency Tables, had been busily writing in the group’s 

logbook just prior to the start of the episode, and was still in the process of adjusting her display 

to that view as Tina, Jessica and Shirley began to coordinate a series of actions and 

interpretations around the linked Equation, Table, and Graph. As Tina edited candidate function 

parameters, the students reacted to the changing graphical and tabular displays. Our focus in 

analyzing this excerpt is on how these students coordinated these and other representational tools 

and interpreted the links among them in relation to the decryption task. 

1. Jessica: [Watching changes in the IFT as Tina increases candidate coefficient from 1 to 2] Oh, keep 
on doing it! I got more letters. Keep on going. Go, go…Go. 

2. Shirley: [Looking at the Graph] Now it looks…now we're looking… 
3. Jessica: Oh! Keep on going, yeah! 
4. Tina: Wait, wait. [increases coefficient again] Do that, do that, do that? 
5. Shirley: Yeah. Keep on going. 
6. Jessica: No, go, go, yeah. Keep on going. 
7. Shirley: More. 
8. Jessica: Keep on going. 
9. Shirley: More. More, more, more. 
10. Jessica: OK, that's enough. 
11. Shirley: No, more. 
12. Tina: [increases coefficient from 4 to 5 and looks at the Graph] OK, that's a little too much. 
13. Jessica: Go back. 
14. Shirley: You want to change another one? Change the constant? 
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15. Jessica: Maybe you should try changing the constant. 
16. Tina: [gasps] Hey we did it! Four x plus seven. 

 
Summary. Jessica’s instructions were based on her observation of the increasing number of 

different letters appearing in the Inverse Function Table as Tina adjusted the equation. 

Candidates with linear coefficient three and four spanned more of the full alphabetic domain 

over the set of ciphertext outputs than those with coefficients one or two, and so indeed caused 

more letters to appear as Tina unitarily increased that coefficient from one to four (Figures 5a-d). 

Meanwhile, Shirley gave her instructions based on a graphical version of the same information, 

as Tina’s adjustments to the candidate coefficient brought the graph into a steadily better fit with 

the window dimensions spanned by the alphabet on the x-axis and the ciphertext values on the y-

axis (Figures 4a-d).  

[Insert Figures 4a-d and 5a-d about here] 

Analysis. These three students successfully coordinated their interpretations of three linked 

candidate function representations to determine parameters of the encoding function. They did 

not, however, consider distributed representations of the underlying problem situation apart from 

those aspects embedded in candidate function display features. Figure 6 illustrates the 

arrangement of students and representational tools through which the group coordinated their 

interpretations of the decryption problem across several displays with their actions on the 

candidate function Equation. Their inferences about that Equation relied on the Graph and 

Inverse Function Table as resources for comparing representations of the candidate function with 

information about the encrypted message incorporated into the displays—the vertical dimension 

of the graphing window, and the ordered lists of ciphertext values and possible associated letters 

in the Inverse Function Table. These inferences were retrospective; rather than anticipating 

precise parameter values based on examination of the ciphertext, they simply evaluated whether 
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to “keep on going” after each adjustment. Jessica’s use of the Inverse Function Table in this way 

would prove to be limited in scope, and the tool itself was soon removed due to the discovery of 

the bug. By contrast, this emerging approach to using the graph would figure into their problem 

solving efforts in each of the remaining 12 tasks they undertook. However, neither Graph nor 

Inverse Function Table provided sufficient information about the encrypted text and the 

encoding function to reliably solve more challenging codes, and despite their success in this 

episode the group would soon seek other ways to make use of additional representational tools. 

Indeed, while they determined a precise value for the candidate coefficient by comparing values 

of 4 and 5 using both displays, their subsequent success in finding the correct constant value was 

nearly accidental; having set the coefficient, Tina simply incremented the constant until the 

plaintext display showed a precise match. They would not be so lucky in later tasks; the next 

episodes detail their development of more deliberate approaches to reasoning about ciphertext 

values and precisely specifying encoding function parameters. 

[Insert Figure 6 about here] 

Episode Two 

Over the following three episodes, we highlight the ways the group began to reorganize itself 

into a new configuration of participants and representational tools. In particular, our analysis will 

illustrate the ways this adaptation at the level of the distributed group depended on and followed 

from the efforts of individual participants to make sense of, and to coordinate their 

interpretations of, several representations of the ciphertext. The next episode took place on the 

same day as and immediately following Episode One, and finds Group One in the midst of an 

effort to decode a message that had been encrypted using the function y=-4x+7, and so contained 

predominantly negative values. As in the previous episode, Tina edited candidate function 
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parameters, and she and Shirley noted changes in the graph while Jessica did the same in the 

inverse function table. This time, however, that arrangement of students and representations 

proved less fruitful. After proceeding this way for about three minutes, Tina had adjusted the 

coefficient to negative three based on observations of the graph (see Figure 7), but they were 

unable to progress further using only the linked representations of the candidate function. 

[Insert Figure 7 about here] 

Instead, the group began to turn their attention to other representational tools in search of 

additional information about the Coded Text. The message they were trying to break did not 

contain the letter Z, so the extreme values of its range were 3 and -93, respectively representing 

A and Y. In the segment that follows, Tina asked Monique to report the lowest value in the 

ciphertext based on her view of the Word Frequency Table, prompting a series of several 

responses from several different representational tools: 

17. Tina: What's the highest…number in the word frequency table? I mean, what's the lowest? 
18. Monique: [Looking at the Word Frequency Table] Umm…three. 
19. Tina: [Looks at the Coded Text] That's the highest. Cause they're all negative. 
20. Monique: Oh yeah, so positive. OK. 
21. Jessica: [Looking at the Inverse Function Table] It’s forty-one. 
22. Tina: [Leans forward to look closely at the Coded Text] I'm looking at negative seventy-seven. 
23. Monique: The lowest… Negative twenty-five.  
24. Jessica: Oh. No, I got…well, never mind. 
25. Monique: No, negative one. 
 

Summary. In this brief segment, these three students examining three different 

representational tools produced five incorrect candidates (3, -41, -77, -25, and -1) for the lowest 

value in the ciphertext. Both Tina’s difficulty in formulating her question (line 17) and 

Monique’s struggles to answer it correctly illustrate their efforts to make sense of the meanings 

of “highest” and “lowest” in the context of a set of numbers that were predominantly negative, 

and of displays that did not order those numbers in terms of relative value or otherwise make 

extreme values salient. Monique’s successive proposals for the lowest number (lines 18, 23, 25) 
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likely reflect each of these challenges. The word frequency table presents ciphertext characters in 

relation to their position in words in the encrypted message and the respective frequency of those 

words, rather than in order of their relative value. Thus, -1, the ciphertext value with lowest 

absolute value, appeared only once in the Word Frequency Table, while 3, the next lowest 

absolute value, appeared seven times (Figure 8a). After Tina asserted in line 19 that 3 was “the 

highest” because the other values were “all negative”, Jessica next offered -41 based on her view 

of the inverse function table (line 21). Again, this incorrect report may have reflected Jessica’s 

interactions with the features of the representation rather than her understanding of relative 

value. The inverse function table divides the range of values in the ciphertext into two columns. 

Thus it appears that Jessica simply read from the bottom of the wrong column, where she would 

have seen -41 rather than the -93 at the bottom of the next column (Figure 8b). In offering -25 

and then -1, Monique appears to have been converging on successively lower absolute rather 

than relative values as she continued to scan the Word Frequency Table (lines 23, 25). And 

Tina’s own proposal of -77 (line 22) may have been the lowest she saw in the Coded Text, where 

it appeared in the first word and where she would have had to scan to the bottom row to see -85 

or click the down arrow in the lower right corner of the ciphertext display in order scroll toward 

the further down in the passage and see -93 (Figure 8c). 

[Insert Figures 8a-c about here] 

In the moments that immediately followed, they would resolve the misunderstanding about 

relative values, as all four students in the group came to agree that -77 was the “lowest” value 

among their respective candidates: 

26. Jessica: [Looks up at Monique] No the, the… 
27. Shirley: [Looks up at Monique] No, no, that's not the… 
28. Jessica: The higher the negative, the, the lower…the positive. 
29. Tina: [Looking at Candidate Equation and Graph] So this has got to be it. [Begins editing the 

constant] 
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30. Monique: [After looking up in response to Jessica and Shirley’s comments, turns back down to look 
closely at the Word Frequency Table] Oh then it's, then it's negative…seventy-seven. 

31. Jessica: I got… 
32. Shirley: Seventy-seven? [looks back down at Graph] 
33. Monique: Yeah. 
34. Shirley: [Watching Graph as Tina edits candidate function] OK, it’s going somewhere… 
35. Monique: [Looks up from her PDA, sits back, speaks softly] I just learned something. Cool. 
 

Summary. As Monique settled on -1 as the lowest number in the code, Jessica and Shirley 

both recognized her confusion and moved quickly to correct her (lines 26-28). Though 

imprecise, Jessica’s explanation that “higher” negative values would correspond to “lower” 

positive ones resonated; on hearing it, Monique turned her attention back to the word frequency 

table, scanning for a few seconds before correctly identifying -77 as the lowest of the reported 

values (line 30). Moreover, she appeared sufficiently confident about her interpretation of this 

number as the lowest value that she affirmed her report—after studying the word frequency table 

for a few moments more—when Shirley questioned it (lines 32-33). As the rest of the group 

continued analyzing the code, Monique leaned back in her chair, and addressed no one in 

particular as she announced that she had “just learned something” (line 35). Meanwhile, Tina had 

already decided, based on the presumed low value of  -77 and the appearance of the graph, that 

the candidate coefficient of -3 had “got to be it” (line 29) and begun decrementing the constant. 

Analysis. Figure 9 depicts the new arrangement of students and representational tools 

emerging in this episode. While the group continued to draw inferences about the candidate 

function parameters only from the Graph and Inverse Function Table, they also began to show 

considerable interest in and develop shared ways of seeking information in two representations 

of the encrypted message. As the next episode will show, these efforts to interpret a wider array 

of distributed problem representations would prove pivotal in their subsequent development of 

approaches to reasoning about encoding function parameters. Moreover, their attention to the 
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extreme values in the ciphertext range would emerge as a central feature of their engagement 

with both the task and the underlying mathematics.   

[Insert Figure 9 about here] 

The current episode also illustrates that the process through which the group determined how 

to answer a question like the one they discussed here was not simply dependent on the relative 

affordances of these different representational tools or the mathematical knowledge of the 

students. Rather, their efforts to interpret and reason from code features like extreme values 

emerged from negotiations among students, representations, and the distinctive characteristics of 

a particular problem. For example, as this episode clearly illustrates, the Word Frequency Table 

was hardly well suited to finding extreme values. However, the group’s joint efforts here to 

locate and to coordinate their interpretations of those values in that display would figure centrally 

in emerging regularities by which the group would both seek out characters representing one-

letter-words in the Word Frequency Table, and associate those ciphertext characters with 

plaintext letters using interpretations of extreme values. Negotiations like these, we argue, were 

exactly the processes whereby the group learned to use these representations as tools for 

breaking codes, gradually coming to consensus around particular ways, and not others, of 

coordinating a distributed network of students and representations. And these collective efforts at 

strategic coordination of representations and participants, as this episode illustrates, were also 

opportunities for individual mathematical meaning-making of the kind displayed here by 

Monique. This instance in particular suggests an important mechanism by which the changing 

strategic configurations of the group might yield corresponding learning opportunities for its 

individual members, as in this instance Monique’s understanding of what “highest” meant in 

relation to negative values was of importance to the group’s reliance on her representational 
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vantage point, and Jessica’s and Shirley’s efforts to coordinate that understanding would be 

crucial to the group’s ability to function effectively in that alignment. 

Episode Three 

The next episode found the group engaged in additional efforts to coordinate individuals’ 

views of different code representations in order to identify and interpret extreme values in the 

ciphertext. It also illustrates how they would begin to use those interpretations in combination 

with the identification of single-letter words in order to draw inferences about the encrypted 

message and the encoding function. This episode took place a day after the previous one, and the 

students had rotated role assignments so that Shirley was now editing the candidate equation, 

Tina examining the Graph, Monique viewing the Inverse Function and Jessica the Frequency 

Tables. The message they sought to break in this task was encoded using the function y = -6x + 

14, and again included the plaintext letters A and Y but not Z. It also featured a single-letter 

word, which Jessica located less than a minute after the group began work on the task: 

36. Jessica: [Looking at the WFT] I found a one-letter word. 
37. Tina: You did? 
38. Jessica: Negative forty, and there's… it happens two times in the poem. 
39. Tina: OK. Tell me what's the highest number? 
40. Jessica: That would be a positive, right? 
41. Tina: Yeah. Highest positive number. 
42. Jessica: There is… 
43. Tina: [Looking at the Coded Text] Eight. I see eight. 
44. Jessica: Eight. 
45. Tina: Now what's the lowest negative number? 
46. Jessica: Negative? 
47. Tina: Yeah. 
48. Jessica: I think that would… 
49. Tina: [Looking at the Coded Text] I'm…I'm looking at negative one hundred and thirty six. 
50. Jessica: Where's that? 
51. Tina: On the top. Do you see it? Negative one thirty six? 
52. Jessica: [Continues looking at the WFT] The…no. 
53. Tina: OK. What was the, what was the negative number you had? 
54. Jessica: [Still looking at the WFT] Oh, I see it. OK. 
55. Tina: What was the number you had for the one-letter word? 
56. Jessica: Negative forty? 
57. Tina: Negative forty. [Begins scrolling down to the WFT] 
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58. Jessica: And…and you're wrong, cause um, the lowest, the highest number…wait, no. You're right. 
59. Tina: [Looking at the WFT] Negative forty…[scrolls up to look at the graph]…and due to the graph 

that's the same I would say that negative forty would be I. So how do we get I to equal negative forty? 
 

Summary. This exchange finds the group communicating with more mathematical precision, 

and coordinating representations more efficiently, than in Episode Two. Whereas in the previous 

episode three students used three different representations to derive several different and 

incorrect minima, here Jessica and Tina quickly and accurately found the same maximum value 

in the Word Frequency Table and the Coded Text (lines 39-44). Reaching agreement about the 

minimum value across these different representational views took more work, as Jessica had to 

scan for several seconds to find Tina’s proposed value of -136, and briefly began to dispute the 

relative value comparison before agreeing it was the lowest (lines 45-58). Their eventual 

concurrence, however, reflects the effectiveness with which the girls were coming to use their 

respective representational tools in concert to determine these range values.  

[Insert Figure 10 about here] 

Having established the extreme values of the ciphertext, Tina sought to interpret other values 

in terms of the range between them, asserting that the one-letter word Jessica had identified 

earlier in the segment corresponded to the plaintext letter I (line 59). In attributing this 

correspondence “to the graph that’s the same,” she likely took advantage of the fact that the y-

axis of the Graph, automatically scaled for this set of ciphertext values, would have been marked 

by tens from 10 at the top to -140 at the bottom (Figure 10). Because in this instance the one-

letter word, -40, happened to be a multiple of ten, it appeared as a labeled scale mark on the y-

axis. Moreover, Tina interpreted the positioning of -40 above the middle of the y-axis in the 

graphing window, and so somewhat above the middle of a span of numbers ranging from 

somewhat lower than -136 to somewhat higher than 8, as corresponding to the alphabetic 

positioning of the letter I. She also appears to have linked this graphical interpretation more 
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directly with the low and high values in the range, as she demonstrated in explaining her 

rationale for linking -40 with I to her group mates a few minutes later: 

60. Tina: OK…[picking up a pencil] there are letters, you know how they're turned into stuff, like A 
[writes an “A” on an open notebook page on her desk], through Z [draws a down arrow below the 
A, and then writes a “Z” below that]? 

61. Monique: [nods] 
62. Tina: You know, like, [gestures toward PDA] according to this graph, A would be the greatest 

number. 
63. Monique: Um-hm. 
64. Tina: [continues writing as she speaks, recording the values she references] And Z would be the 

least. The least number was one hundred...negative one hundred and thirty-six. And the greatest 
number was eight. So A probably is eight. But it's, [points to Jessica] she found that the one-letter 
word was negative forty. Now where would we put that in the range? 

65. Jessica: In the middle. 
66. Tina: Yeah, somewhere in the middle. 
67. Monique: [puts her head down against her desk briefly] I have no idea. 
68. Tina: [Looking at Monique, she holds both hands flat in the same plane, waving them first upward, 

then forward over her paper, as if along the arrow she drew earlier between A and Z.] But sort of in, 
a little bit more to, closer to the A than the direct middle [presses her index finger against the paper 
to indicate the letter A]  

69. Monique: [slumps back in her chair and puts her hand to her forehead as Tina points to her paper. At 
this point, the teacher interrupts the group briefly] 

70. Tina: [continuing with her explanation 90 seconds later] See, if you look at this [reaches across table 
to Monique’s PDA, now scrolled to the top of the display, and points at the Coded Text with her 
stylus, indicating an 8], the greatest number is eight. 

71. Monique: [hunching forward and leaning across her desk to look at the screen of her PDA, now 
between her desk and Tina’s, as Tina points there] Um-hm. 

72. Tina: And according to this [moves her stylus down to indicate the Graph], this means that A [points 
to A on the x-axis] will be the greatest number [points to the section of line displayed above the A] 
and Z will be the very very very least [follows slope of line down to location above Z]. Don't you 
think? 

73. Monique: [reaches forward and taps PDA screen] Yes. 
74. Tina: So. That's what happens when we do this. When we counted all these numbers, A, eight, was 

the greatest number, right? 
75. Monique: [nods] 
76. Tina: So that means A will probably be eight, right? 
77. Monique: [sits back and looks up, pauses for two seconds] Yeah, because A is the greatest letter and 

eight is the greatest number. 
 

Summary. This segment again finds the group engaged in careful efforts to coordinate their 

interpretations of information about the code distributed across several representational tools. 

Monique, in particular, was confused about how Tina knew that -40, the one-letter word in the 

message, was an I rather than an A, the other commonly occurring English single-letter word. 
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Tina’s explanation, which began with a series of inscriptions on paper (line 60), briefly 

referenced the Graph (line 62), continued with pencil and paper (line 64), recalled a value found 

by Jessica in the Word Frequency Table (line 64), next linked a sequence of gestures to the 

paper-and-pencil inscriptions (line 68), and finally moved to the Coded Text  (line 70) and then 

the Graph (line 72) on Monique’s device. Across these several tools and inscriptions, Tina built 

an account of the mapping between the ordered letters A through Z in the plaintext alphabet and 

the ciphertext values 8 through -136, and used that mapping to link the relative positions of I 

among the plaintext letters and -40 among the ciphertext numbers. Though Monique appeared 

both confused and frustrated at some points in Tina’s paper-based explanation (lines 67, 69), she 

engaged more fully as they came together to look at the same device screen (lines 71-75), and 

managed to partially articulate this interpretation herself by the end of the segment (line 77). 

Analysis. In the first of these instances, Tina and Jessica worked to establish a shared 

interpretation of ciphertext values across different displays. And in the second, Tina likewise 

sought to articulate links between several displays and inscriptions in order to coordinate her 

interpretation of a ciphertext character with Monique’s. None of these efforts involved 

simultaneous consideration of multiple candidate function representations; in fact, apart from 

Tina’s references to the graphical display those representational tools did not figure into this 

episode at all. Instead, these segments illustrate students’ engagement with multiple displays and 

inscriptions as resources for establishing shared meaning of the mapping between plain and 

ciphertext characters. In Tina and Jessica’s case, this shared meaning involved establishing 

common interpretations across different screen views and representational tools. In Tina and 

Monique’s case, establishing shared interpretations of the ciphertext relied on simultaneous 

examination of common displays—and even a common device. All of these efforts to negotiate 
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shared meaning for the Code Breaker tools were attempts to coordinate multiple participants and 

displays into effective arrangements for undertaking collaborative decryption tasks. The next 

episode illustrates the ways that these students would come to enact those alignments in 

subsequent tasks, and to extend them to inferences about candidate function parameters. 

Episode Four 

The following excerpt rejoins the group in their next decoding session two days later, and 

finds Monique and Tina putting their newly-calibrated interpretations of an encoded message 

together to draw inferences similar to those in the previous episode about the mapping between a 

one-letter ciphertext value and a plaintext letter. It also finds the group moving into a new 

arrangement of representational tools and participants as a result of their interpretive work in the 

previous two episodes. That new configuration would have significant consequences for their 

efforts to connect distributed representations of the ciphertext with the specification of candidate 

function parameters. On this day, Tina again had responsibility for the Equation and Graph and 

Monique the Word Frequency Table as they examined a message encrypted with the function 

y=x2+7. This segment finds these two students engaged in efforts to establish a shared 

interpretation of the information provided by the latter representation: 

78. Tina: [looking at Graph] All right. Obviously, due to this, it might be a squared but I'm not sure…No, 
it's not a square. It's not a square… [points to Monique] OK, word frequency. Any one letter-words? 

79. Monique: [leans forward and looks closely at the WFT] OK, there's two. 
80. Tina: Two one-letter words? 
81. Shirley [Taps on Monique’s desk] Hey! 
82. Monique: [To Tina] Um-hm… It's 8 and… It's 8 and 88. 
83. Tina: 8, 88… 
84. Monique: And then it's…where it says count, it says two for both of them. 
85. Tina: 88 is obviously I. 
86. Monique: [holding her stylus up, waves her hand twice from left to right over her PDA as she speaks] 

Yeah, because it's bigger. 
87. Tina: And 8 is obviously… 
88. Monique: It's A. 
89. Tina: A. 
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Summary. This excerpt illustrates changes in both individual and collective reasoning about a 

representational tool. The two distinct one-letter words that Monique identified in the Word 

Frequency Table (line 82) clearly represented distinct plaintext letters, and the students knew 

from prior discussions that two commonly occurring single-letter words in the English language 

were “A” and “I”. Their efforts to articulate which of these plaintext letters mapped to 8 and 

which to 88 illustrate how much more closely aligned their interpretations of these values had 

become since Episode Two. As Tina rightly asserted that 88 must be “I”, Monique immediately 

followed by providing the explanation for this insight (line 86), even using a gesture reminiscent 

of Tina’s in line 68 of the previous episode to illustrate the relative values. Similarly, as Tina 

began, “eight is obviously…” (line 87), Monique finished her sentence for her (line 88). Thus, 

from an individual standpoint, Monique had clearly come to interpret the mapping between plain 

and ciphertext characters in a way that matched Tina’s. And from a collective standpoint, the 

students had now established sufficient shared meaning for that mapping that they could now 

coordinate those interpretations while viewing different displays. Indeed, in the previous two 

episodes, Tina repeatedly compared information reported from displays examined by other 

students with that provided in her own view of the Coded Text. By contrast, in this segment she 

relied exclusively on Monique’s view of the Word Frequency Table, allowing the group to adopt 

a more efficient distribution of participants and representational tools. 

That increasing efficiency at the group level, however, would have important implications for 

the collaborative participation of all students in subsequent stages of the problem-solving 

process. Over the next several minutes, Tina worked alone, with paper and pencil, while the 

other students in the group continued examining the code with their handhelds. The next excerpt 

opens with Tina explaining her efforts to the rest of the group: 

90. Tina: I'm trying to find all possible… I'm writing down all possible functions for A to equal eight. 
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But… 
91. Monique: Wow. 
92. Tina: I has to equal eighty-eight at the same time. So I'm crossing out all of these functions that I've 

thought of so far. 
93. Jessica: (nods) 
94. Tina: So why don't you guys try and guess and check while I'm doing this. 
95. Monique: I thought she said… 
96. Shirley: I'm trying to make something. 
97. Jessica: You could have told me before. 
98. Monique: I'm trying to make something too. 
99. Tina: All right. Um…oh no, that wouldn't work. 
100. Monique: I'm trying to… 
101. Jessica: I'm going to change the function. 
102. Shirley: No, I'm going to do it! 
103. Monique: I'm going to tap on the line. 
104. Tina: This would work. This would work. 
105. Monique: Oh, no I'm not going to tap it. 
106. Tina: Try y equals ten x minus two. 
 

Summary. As her account suggests, Tina had been writing down a list of linear candidate 

functions, and checking to see which would include both the ordered pairs (1, 8) and (9, 88), 

essentially attempting to solve the system of equations 8=a(1)+b and 88=a(9)+b by trial and 

error. First fixing a value for a, she would generate a list of equations with that coefficient and 

varying values for b—y=ax+1, y=ax+2, and so on—and then systematically eliminate all those 

functions that failed to generate both ordered pairs. Eventually, she found a function, y=10x–2, 

that solved the system of linear equations she had established, successfully mapping one to eight 

and nine to eighty-eight.9 In doing so, she abandoned the representations in the Code Breaker 

software altogether, instead relying on her own generation of a series of paper-based inscriptions 

to manipulate candidate function parameters algebraically. Moreover, she simultaneously 

abandoned reliance on her group mates. Even as Tina explained her approach, and suggested that 

they might “try guess and check” while she continued, Jessica expressed frustration (line 97) that 

Tina had not shared this line of inquiry earlier, and announced (line 101) that she would take 

                                                
9 In fact, this function did not solve the code, because Tina had incorrectly assumed that it should be linear; after a 
hint to this effect from the teacher she quickly came up with the correct quadratic encoding function. 
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charge of the function-editing responsibility that Tina had abandoned. Shirley and Monique, each 

in tones suggesting playful sarcasm, asserted that they were engaged in important projects of 

their own (lines 96, 98, 100-103). 

Analysis. Figure 11 illustrates the new arrangement of representational tools and students 

emerging in this episode. In contrast to prior episodes, the group had now begun drawing 

inferences about the encoding function parameters not only on the basis of information 

embedded in features of dynamically linked candidate function representations such as the graph, 

but also from static problem representations. Moreover, these inferences from ciphertext to 

candidate Equation parameters were mediated by Tina’s use of inscriptions to generate her own 

paper-based representations of the candidate function. This new alignment quickly became 

stable; Tina used a combination of paper-based, spoken and gestural forms of symbol 

manipulation and algebraic reasoning along the lines displayed here in 6 of the group’s final 9 

decryption tasks. She departed from these approaches only in cases where the code was simple 

enough to be solved without them, or where a one-letter word did not occur in the message. In 

each case, she engaged these algebraic representations alone, though the other students continued 

to provide input from other representations as Monique did here. These algebraic approaches 

proved both effective, in the sense that they broke several more difficult codes, and efficient, in 

that in contrast to prior configurations, they could be enacted by a single student.  

[Insert Figure 11 about here]  

This collapse from a distributed problem-solving system of multiple participants and 

coordinated representations to the efforts of a single student to complete critical portions of these 

later tasks represents a clear breakdown in the intended collaborative design. It bears noting, 

however, that this pattern of frequent solo work by Tina was not established until the 8th of 15 
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such tasks completed by the group, and that Tina was a year older and two years more advanced 

in prior mathematics course-taking. In other words, the episode and other subsequent work by 

this group indicate clear limits in the extent to which this design supported ongoing participation 

from multiple students, but it does not reveal the relative degree to which these limitations relate 

to the representational tools and tasks, the ways successive tasks were sequenced, or the level of 

variation in student knowledge and expertise accommodated by the design. 

Summary of Episodes One to Four 

Over the course of these four episodes, Group One moved towards more accurate and more 

efficient ways to configure itself in seeking information about the encrypted message and 

drawing inferences about function parameters. To catalyze these successive reconfigurations, the 

students overcame some initial difficulties in interpreting and coordinating their use of the Code 

Breaker representational tools, gradually constructing ways to making shared sense and effective 

use of the relations among multiple candidate and problem representations. Episode One shows 

students using the dynamic links between candidate function representations without establishing 

corresponding interpretive links between the phenomena represented by each display—they 

made use of the fact that the Graph and Inverse Function Table were linked to the Equation in 

order to complete the task, but there was little evidence to suggest that they made sense of those 

linked displays as multiple representations of a common function. Episode Two likewise 

highlights how students examined a variety of ciphertext representations but struggled to 

establish common interpretations of the same set of numerical values across different participants 

and different displays. Over the course of Episodes Two, Three and Four, members of Group 

One gradually came to agree on ways to identify, interpret and draw inferences about encoding 

function parameters from distinctive characters in the ciphertext, and to coordinate those 
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interpretations and inferences across different and distributed representational views. They 

“learned to see” pattern in and through the representational tools (Goodwin, 1994; Hanson, 1958; 

Stevens & Hall, 1998). In several instances, the group-level reconfiguring of participants into 

more effective arrangements took the form of peer-teaching moments, as when Jessica and 

Shirley in Episode Two and Tina in Episode Three took care in establishing shared 

interpretations with Monique. In Episode Four, however, moving toward increasing accuracy and 

efficiency on the part of the group corresponded to participation from fewer individual students. 

Episode Five 

The following excerpt joins Group Two ten minutes into their efforts to break a code 

encrypted with the function y=5x+7. During those ten minutes, the group developed a clever way 

to interpret the rounding bug in the inverse function table as they evaluated candidate functions. 

Despite the novelty of this discovery, they had been unable to translate it into a successful 

approach to determining parameters of the encoding function. Jason was responsible for editing 

the candidate function and observing the Graph in this session, CJ for examining the Inverse 

Function Table, and Vince the Frequency Tables. Just prior to the start of the excerpt, and 

without consulting or explaining his reasoning to his group mates, Jason had adjusted their 

candidate function to y=17x-29. This segment finds CJ reacting to the appearance of that 

candidate in the Inverse Function Table, and then directing his peers to join him in seeking 

additional insights from other representational tools. Our analytic focus in examining this 

episode will be on whether the group established and maintained a stable configuration of 

participants and tools, and on the ways they interpreted relations among different representations. 

107. CJ: [Looking at the IFT as Jason is editing candidate function] OK, you're definitely going far off. 
It's AA, CC, DD, E, FFF, G, HHH, J. [Watches IFT for 10 more seconds before scrolling up to look 
at the Graph] OK, can I show you something? 

108. Vince: What? 
109. CJ: You guys scroll up to the…graph. OK? 
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110. Vince: [scrolling up] OK. 
111. CJ: [taps the “H” label on the x-axis of the Graph to highlight trace line] Click on H. 
112. Vince: [taps the “H” label on his own PDA] H. 
113. CJ: See how they're, like, the lines hit it and branched off? That's bad. We want to get rid of that. [to 

Jason] You need to make that negative number there, your -29 higher. And your 17 lower. 
114. Vince: Hey, change that constant. 
115. CJ: Change the constant back to zero. Change the constant back to zero! 
116. Jason: I’m trying to! For the negative, do I make it like a higher negative, or a lower negative? More 

towards a big negative? 
117. CJ: More towards zero. Make the 29, start making the 29 more towards zero. And 17 more towards 

zero as well. 
118. Vince: OK, you're getting real close. 
119. CJ: You're getting much closer. Hey, Vince. Watch the frequency table, all right? 
120. Vince: Frequency? 
121. CJ: Yeah. Watch for…every like four or five changes,  
122. Vince: [Scrolls to Frequency Table] Uh-huh. 
123. CJ: Or when I ask you, tell me the most common numbers. The most common Y, OK? When I ask 

you to, tell me the most common Y. 
124. Vince: Right now, it's 112 and 22. 
125. CJ: And how many are there? 
126. Vince: Four. 
127. CJ: Four. 
128. Vince: [Scrolls to WFT] There's two words that are the same. 
129. CJ: OK, hold on, hold on. Uh, Jason, hold on. 
130. Vince: Wait a sec. Hey, there's two words that are the same, they both start with 12, and 12 is one of 

the most frequent numbers. 
131. CJ: We got it. We're on the right track. Look at the inverse frequency [sic] table. 
132. Jason: [tapping the “L” label on the x-axis of the Graph] Wait. L right now is 12. And that's the most 

common. 
133. CJ: Everybody. Go to inverse frequency [sic] table. [Vince and Jason both scroll to the IFT] We 

have a B, C, E, F, H, I, J, K, L, M, N, O, P, Q, R, anyway. That's good because there are more ones.  
 

Summary. This episode finds the group moving among several representations of both the 

encrypted message and the candidate function, and coordinating the attention of several 

participants toward each of those displays. They examined five different representational tools 

here in a span of less than two minutes, and in several instances individual students adjusted their 

viewing windows in order to jointly consider and seek to establish shared interpretations of 

different displays. CJ’s inferences from the Inverse Function Table (lines 107, 131, 133) 

illustrate the group’s opportunistic use of an accidental feature provided by the buggy behavior 

of this tool, rejecting candidate functions that appeared to imply the mapping of a single input to 
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multiple outputs.10 The students then examined the graph, and drew the same conclusion from a 

graphical manifestation (Figure 12) of the same buggy phenomenon (lines 107-113). Vince then 

scrolled to and made observations based on the Character (lines 124, 126) and Word (lines 128, 

130) Frequency Tables, while Jason followed up on Vince’s report from the frequency tables by 

tracing the mapping of L to 12 through the current candidate function (now y=x) on the Graph 

(line 132). 

[Insert Figure 12 about here] 

Analysis. Figure 13 shows the arrangement of students and representational tools adopted by 

Group Two over the course of this excerpt. As with Group One’s early decryption efforts in 

Episode Two, that configuration was complex, featuring three students11 jointly engaging several 

representations in succession. The group devoted considerable effort to developing and 

coordinating ways of interpreting representations of both the candidate function and the 

ciphertext, but they were not yet successful in establishing interpretive links between those 

different sets of representational tools. They drew inferences about parameters of the algebraic 

candidate function from both the inverse function table and graph, though neither of those efforts 

resulted in the correct determination of an unknown parameter, and both relied on the buggy 

behavior of the software rather than any characteristics of the ciphertext values. And they also 

examined and discussed two ciphertext displays, though they were not able to relate those 

observations to the encoding function. Indeed, rather than a stable alignment of participants and 

tools, the group’s strategic work in this segment was characterized by shifting views and 

exploratory investigations of different representational tools. 

[Insert Figure 13 about here] 

                                                
10 See White (2008) for a detailed analysis of this approach. 
11 The group’s fourth member, Reggie, was absent on this day. 
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Notably, however, the students’ efforts to make sense of these different representational tools 

in relation to the decryption task did establish a number of temporary interpretive links between 

displays. Immediately after observing in that the letter H, among others, was associated with 

three different values in the ciphertext, CJ shifted his view to the graph, and used a feature of that 

display to examine the same letter from another view (line 111). As a consequence, he witnessed 

the same non-functional behavior (associating a single input with multiple outputs), and 

interpreted it in the same way, as something “bad” that they needed “to get rid of” (line 113). A 

moment later, he sought to establish and explore the potential utility of another link between 

representations, asking Vince to observe the frequency table and “watch for” changes in common 

characters corresponding to “every like four or five changes” to the candidate function 

parameters (lines 121, 123). In this case, and reflecting the students’ still-limited familiarity with 

the behavior of and still-developing meanings for these tools, he expected a dynamic relationship 

between displays when there was none. And Jason sought to extend Vince’s analysis of the 

ciphertext character 12 by locating it in the graph, though he appeared uncertain about how to 

interpret the mapping between that character and the letter L indicated by the current candidate 

function (line 132). In each case, the students appear to have been trying to make sense not only 

of the intended dynamic links among multiple representations of the candidate function, but of a 

much wider array of possible relations among representational tools, displaying varying degrees 

of success and considerable stores of both confusion and creativity as they went. The next two 

episodes illustrate the ways they would come to establish and work to sustain ways for 

interpreting and applying one such set of relations among displays. 

Episode Six 
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Over the final few class sessions of the study, the students in Group Two developed a 

configuration of representations and participants that they would come to use with considerable 

effectiveness in breaking some challenging codes. In the next episode, they faced a message 

encrypted with the function y=12x3-15. During this session, Jason edited candidate function 

parameters, while Reggie was assigned to watch the graph, Vince the Function Table, and CJ the 

Frequency Tables. Our analysis again focuses on whether and how the group stabilized 

alignments and interpretations of representational tools, this time with particular attention to the 

ways their approach involved coordinated efforts among multiple participants. As Jason adjusted 

the candidate function parameters, Vince examined the ciphertext values displayed in the 

frequency table, and then began comparing with those in the function table:  

134. Jason: So higher, or lower, what? [Changes exponent from 3 to 2, then back to 3 again] It’s 
probably three. [begins increasing the coefficient] 

135. Vince: [Looking at Function and Frequency Tables as coefficient changes to 12] OK. Stop, right 
there. You’re within range. 

136. Jason: All right, so keep on doing the y? [Begins increasing coefficient again] 
137. Vince: So, change the, change the constant a bit. Wait, let me see something. 
138. Jason: OK, yeah, the constant. 
139. Vince: The smallest number… wait, stop. Let me think. Let's see...If…if, if, if, if, if, if…[leans over 

his PDA, alternately moving his stylus toward values in the function and frequency tables for 
approximately 12 seconds, then looks up] What's the, what’s the coefficient at right now? 

140. Jason: The coefficient, um, it’s at 13. 
141. Vince: 13? 
142. Jason: Uh-huh. 
143. Vince: Change it to 12. [Waits for Jason to edit value, and then reacts when his view updates] OK. 
144. Jason: Wait. It’s at 11. There we go. 
145. Vince: OK, 12. Now change…what’s the...constant at? 
146. Jason: (glances at poster) Constant’s at 7. 
147. Vince: 7? Change it to…let’s see. Change it to 6. 
148. Jason: Alrighty. 
149. Vince: 5… 

 
Summary. This excerpt finds both Jason and Vince working to draw inferences about 

candidate function parameters from their respective views of the Graph and the Function and 

Frequency Tables. From his view of the Graph (Figure 14a), Jason inferred a cubic function with 

a large coefficient (line 134). As Jason increased the coefficient, Vince watched the changing 
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values in the function table and compared them to those in the frequency table (Figure 14b), 

stopping Jason when the values came “within range” of one another (as, for example, with the 

values on the order of 187,000 and 210,000 that appeared in the function table to match those of 

the same order just below in the frequency table as Jason adjusted the coefficient to 12), and 

directing him to next lower the constant to bring those values still closer together (lines 135, 

137). In fact, changes on one student’s device took a few seconds to update on those of the others 

in the group, so in this instance Jason had already changed the coefficient to 13 before Vince told 

him to stop, and clarifying the actual value required some coordination (lines 139-145). Having 

resolved the coefficient, Vince directed Jason to lower the constant from 7 to 6, and then to 5, 

each time watching the corresponding transformation of all the y-values in the Function Table 

one unit closer to those in the Frequency Table as they would gradually converge on the solution. 

[Insert Figures 14a and b about here] 

Analysis. This emerging approach to using the tables in combination would prove to be an 

effective new organization of participants and representational tools. Vince and Jason managed 

to draw inferences about candidate parameters from this alignment that were highly accurate, and 

that would subsequently allow them to successfully complete the task. The utility of this 

approach can be understood in terms of the way it matched representations of the candidate 

function and the encrypted text, as illustrated in Figure 15. This distributed problem-solving 

approach closely resembles the configuration enacted by Group One in Episode Four (compare 

Figures 11 and 15). Just as Tina matched ciphertext values displayed in the Word Frequency 

Table with plaintext inputs through an algebraic representation of a candidate function, here 

Vince and Jason matched ciphertext values in the Frequency Table with plaintext values through 

a tabular representation of the candidate function. 
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[Insert Figure 15 about here] 

However, while Tina did that work in isolation, Group Two’s approach required two students 

simultaneously viewing devices positioned to different Code Breaker displays. There was a 

notable division of labor organizing the approach; while Jason examined the graph and inferred 

values for the exponent and coefficient, Vince did the work of interpreting the relationship 

between the tables and drawing inferences about the constant. On the next day of class, the role 

assignments for these two students would be switched, so that Vince edited the candidate 

function while Jason viewed the frequency and function tables. As the next episode illustrates, in 

order to maintain the same problem-solving configuration despite a different distribution of 

representational tools among participants the students would first have to carefully coordinate 

their interpretations of those various displays. 

Episode Seven 

In the segment below, students’ assigned representational views were swapped from the 

previous episode so that Vince now edited the Equation while Jason watched the Function Table. 

In this final excerpt, the two students worked to coordinate their interpretations of these 

representational tools so that they could enact the same strategy as before, but in these reversed 

roles. Here, our analysis focuses particularly on how interpretations of the links between multiple 

and distributed representations are established and maintained through interactions between 

multiple student participants. In this task, the message had been encrypted with the function 

y=19x3+1. Prior to the following excerpt, the group had already used the graph and ciphertext to 

deduce a cubic candidate function with a lead coefficient in the high teens. Upon editing the lead 

coefficient to a value of 18 based on his view of the graph, Vince asked Jason whether the values 

in the resulting function table were approaching those of the frequency table: 

150. Vince: Am I close? 
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151. Jason: [looking at the Frequency Table] You have a frequency for…nothing. 
152. Vince: What the…can I see this? (Reaches for Jason's PDA) OK, I…duh. I am way off. [Points to 

the Frequency Table on Jason’s PDA] OK, what’s the highest number here? 
153. Jason: One… 
154. Vince: [Looks at the Function Table on Jason’s PDA] I’m too high.  
155. Jason: [Looking at the Frequency Table] Huge. 
156. Vince: Too high. 
157. Jason: [Comparing Frequency and Function Tables] All right, you’re pretty close. 
158. Vince: I am? 
159. Jason: Go back. 
160. Vince: Here’s what I want you to tell me. OK. [Pointing to Frequency Table on James’s PDA]. Right 

here, OK, 39556, right? Look for a number close around. 
161. Jason: Like, right here [points to Frequency Table], before when it was three hundred thirty-three 

thousand something it was pretty close to this. 
162. Vince: OK. Tell me if I’m close. How’s that? 
163. Jason: Uh, mine hasn’t loaded yet. 
164. Reggie: Pretty close. 
165. Jason: Yeah, it’s close. 
166. Vince: Do I have any uhh… 
167. Jason: Yeah, you have a match, right here [points to Frequency Table]. 
168. Vince: I do? One? 
169. Jason: Yeah. 
170. Vince: OK. How about now? 
171. Jason: Wait. Um, it’s a little bit off… Keep on going… Off, down. We're pretty close. 
172. Vince: [Scrolls down to compare Frequency and Function Tables himself] OK. Our lowest number 

is 24, then the real lowest number is…one hundred…eh, no, the real lowest number is 20. I'm 
going… OK, we got it. 

 
Summary. Vince’s opening question (line 150) referred to the closeness of the fit between the 

values in the frequency table, and those in the function table based on the candidate he had just 

edited. Jason’s reply (line 151), however, was an attempt to interpret other information presented 

in the latter representation. Each student had a hand on Jason’s computer as they sought to 

coordinate their use of these representations by pointing to a shared display (lines 152-156). As 

Vince returned to his own device and adjusted the candidate function according to this latest 

analysis, Jason reported in line 157 that they were now “pretty close”. Vince’s questioning reply 

(line 158) reflects his surprise at this comment, and even as Jason gave a corresponding 

instruction (line 159) for editing the candidate, Vince proceeded to conduct another instructional 

sequence (lines 160-2) to make sure that they were interpreting these representations in the same 

way. 
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At this point, the students had sufficiently calibrated their manipulations and interpretations 

of two devices and three representations—the candidate function and the frequency and function 

tables—that they were ready to apply this distributed array to finishing the decryption. Jason 

reported that he had found a pairing of identical values in the function and frequency tables, and 

then continued to provide feedback as Vince adjusted the coefficient to 19 and sought an 

appropriate constant value (lines 167-171). Comparing the lowest values in the function table 

(Figure 16a) and frequency table (Figure 16b), Vince then reduced the constant from five to one 

to bring the values into alignment (line 172). 

[Insert Figures 16a-b about here] 

Analysis. The arrangement of representations and participants in this episode was as in Figure 

15, but with Jason’s and Vince’s views switched (and with Vince sometimes doubling up with 

Jason’s views of the tables in order to coordinate interpretations). This episode illustrates the 

ways these students established an interpretation of the relationship between the frequency and 

function tables, and thus of problem and solution representations. It also highlights the ways 

distributed representations of the ciphertext served as resources students used to interpret the 

links among multiple function representations. In other words, Vince and Jason found ways of 

making the Equation and Function Table meaningful in relation to one another precisely because 

they devised a way of manipulating and interpreting these multiple representations of a common 

function in simultaneous relation to a representation of the encrypted text. 

Vince and Jason’s approach to combining these representational tools required two students 

to operate simultaneously, as it involved one student viewing and editing the candidate function 

while the other compared the changes in the function table with the static frequency table 

display. In this episode, Vince actually performed both these roles himself in three instances—



Distributed by Design 
 

54 

twice by looking at Jason’s device (lines 152-156, 160) and once by changing the view on his 

own screen (line 172). But in each case his doing so reflected temporary inefficiencies that 

would allow the two-student configuration to operate effectively. In particular, most of Vince 

and Jason’s conversation in this episode was directed toward establishing a shared interpretation 

of the function and frequency tables in relation to the decryption task. Doing so hinged on their 

convergence toward collective meanings for the word “close” and the notion of a “match” as 

each provided metrics for aligning the function and frequency tables, and thus for aligning the 

known candidate and unknown encoding functions. Rather than attempts to bypass collaborative 

interactions, Vince’s reaches toward Jason’s PDA both appear to have been efforts to establish 

this shared meaning and the distributed problem-solving efficiency it would ultimately support. 

In each case, Vince accompanied those reaches by indicating respective places in each table 

where Jason might compare values. And the instance in which Vince scrolled down to view the 

tables on his own device came in response to Jason’s identification of a “match” (line 167) and 

his description of the candidate value as “close” but “a little bit off” (line 171). In each case, the 

students sought to converge on a shared set of discursive tools that would allow them to 

efficiently and effectively coordinate their joint use of three representations. 

Summary of Episodes Five to Seven 

As with Group One, Group Two gradually developed ways of configuring participants and 

tools in order to establish ways of interpreting multiple representations of the candidate function 

in relation to distributed representations of the encrypted text. Episode Five illustrates how 

students actively sought links between representational tools even in initial code breaking trials, 

but these early efforts to identify relationships between displays did not necessarily correspond 

to the actual dynamic links between representational tools established by the software, or prove 
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useful in relation to the decryption task.  In particular, the group was not yet able to form the 

kind of interpretive link between a representation of the candidate function and a representation 

of the encrypted text necessary for reliably solving codes. Over the course of Episodes Six and 

Seven, however, students in Group Two moved to a more stable and more reliable alignment of 

multiple participants and tool, devising an effective approach for coordinating interpretation and 

use of the Frequency and Function Tables and the Equation across two different student views. 

Moreover, unlike Tina’s largely independent efforts to link representations of the candidate 

function and encrypted text by the end of Episode Four, Group Two’s approach to comparing 

such representations featured ongoing coordination between multiple students. 

DISCUSSION AND DESIGN CONSIDERATIONS 

Over the course of the unit, students in the two focal groups reorganized themselves into 

more efficient and more effective arrangements of participants and representational tools. As 

they worked to adapt to the challenges required to complete increasingly difficult tasks, both 

groups moved from relatively uncoordinated and inconsistent uses of multiple displays toward 

the establishment of more stable and successful ways of coordinating participants and aligning 

representations of the encrypted text with those of a candidate solution function. These changing 

configurations required students to interpret representational tools in relation to the decryption 

task, and to collectively coordinate those interpretations in order to effectively combine 

representational tools across multiple participants and devices. Below, we consider these 

successive reorganizations first in terms of the ways they hinged on students’ efforts to reason 

with representational tools in relation to the problem-solving task, and then in terms of the extent 

to which they afforded collaborative interactions or necessitated coordination among multiple 

participants. 
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Reasoning with Representational Tools 

These reorganizations at the level of the distributed problem-solving group were emergent 

from students’ individual and collective efforts to reason with representational tools. From the 

outset, students actively sought to establish interpretive connections both among multiple linked 

function representations, and between function and problem representations. However, groups’ 

collective interpretations and effective alignments of these distributed representational tools were 

built up slowly, and required considerable coordination among multiple students over a series of 

decryption tasks. 

Students’ interpretations of these representational tools reflected their relevance for particular 

approaches to solving the decryption task, rather than their meaning in relation to the 

cryptographic context or the underlying function. So, for example, they often used the Word 

Frequency Table not to draw inferences about the characters making up commonly occurring 

words in an encrypted message (designer’s intent), but rather to identify single-letter words in 

the cipher text. And they used the Character Frequency Table not only to analyze and seek to 

identify commonly occurring letters (designer’s intent), but also to identify high and low values 

in the range, and to compare and match cipher text values with those generated by a given 

candidate function. And they used the graphing tool not only to generate the curve associated 

with a particular candidate function within a fixed display window, but also as a way to further 

examine phenomena that they had observed in other displays, and to demonstrate those 

phenomena to one another. Thus, in Episode Three, after Jessica reported a value as a single-

letter word in the Word Frequency Table, Tina followed up by locating the same value on the y-

axis of the Graph and using its relative location to justify her conclusion that it was mapped from 

an I. Later in the same episode, Tina likewise used the distribution of plaintext letters along the 
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x-axis as a resource for explaining her interpretation of the mapping between those letters and 

the ciphertext characters to Monique. And in Episode Five, CJ and Vince used the Graph to trace 

the mapping of a single plaintext letter to multiple ciphertext characters in order to confirm a 

phenomenon they had observed in the Inverse Function Table. Later in that episode, Jason 

likewise sought to follow up on Vince’s report of a commonly occurring character in the 

frequency tables by tracing it through the graph of the candidate function. 

These varied uses suggest that while students did not always derive a particular intended 

meaning from a given representation, they did demonstrate considerable competencies for 

interpreting, applying and making connections across those representations as problem solving 

tools. And in fact, in cases where students’ attempts to use these representations in their intended 

ways—i.e. as frequency displays—were not aligned with the strategic configuration of the group, 

they were either ignored (as in Jessica’s report in line 38 that “Negative forty…happens two 

times in the poem” and Monique’s similar observation in line 84 about the “count” for the two 

one-letter words she found), or taken by other group members as occasions for recalibrating 

collective interpretation (as in Jason’s report of a “frequency for…nothing” in line 151). Indeed, 

it was through the establishment of emergent, task-specific—rather than canonical or designer-

intended—meanings for representational tools that groups ultimately reconfigured participants 

and representations into increasingly effective problem-solving ensembles. In other words, 

harking back to our theoretical framing at the outset of this paper, it was students’ efforts to 

interpret these displays in relation to a problem-solving task, rather than their apprehension of 

any standard meaning for a canonical representational form, that led to their reorganizations into 

new arrangements of multiple representational tools for solving that task. 
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Although students did routinely capitalize on the dynamic links between multiple function 

representations—particularly those between symbolic and graphical displays—as resources for 

breaking codes, it often appeared that they made use of those linked displays without thinking of 

them as corresponding to different representations of a common function. This finding is 

consistent with earlier research and theory highlighting the unobvious linkages between different 

representations of mathematical functions even if dynamically linked in computer displays 

(Kaput, 1993; Schoenfeld et al., 1993; Thompson & Sfard, 1994). Indeed, there was little reason 

to expect students to interpret the links between function displays in this way; they were an 

automatically propagating feature of the software environment, such that the connections among 

multiple representations were made by the device network rather than needing to be made by the 

students—these links were ‘offloaded’ in this distributed cognitive system (Pea, 1993). Rather, 

students capitalized on those connections in order to align representations of the problem and a 

solution and thus complete problem-solving tasks. It was these links between distributed problem 

and candidate solution representations—between the left and right circles depicted in Figure 2—

that required students to engage in efforts to reason about the mathematical meaning and the 

potential utility of different displays in relation to the problem-solving task, and to engage in 

collaborative interactions with one another through which they coordinated interpretations in 

order to enact decryption strategies. In this sense, multiple linked representations served as 

resources not for illuminating or building understanding of the common underlying referent they 

shared—the mathematical function—but rather for coordinating interpretations of different 

mathematical displays across multiple participants and devices. 

To summarize these findings: student reasoning with the multiple and distributed 

representations provided in the Code Breaker environment did not take the form of discovering 
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or enacting either the designer-intended meaning of each representational tool or the full set of 

designed relationships among those tools displayed in Figure 2 in the process of completing any 

particular problem-solving task. Instead, learning for these students occurred through the 

repetitive encounter with an increasingly difficult sequence of mathematical tasks with the same 

representations, which provoked successive reorganizations at the level of the group between 

tasks. 

This notion of distributed learning—as adaptive reconfigurations of participants and tools—

may mark an important contrast between the present design and that of Hutchins’ renowned 

exemplar of distributed cognition provided by large ship navigation. In “the wild,” distributions 

of intelligence are emergent properties of complex social and material systems that have 

developed over long cultural histories (Lemke, 2000)—centuries, in the case of ship navigation. 

In contrast, the present environment begins with an intentional rather than an emergent 

arrangement of participants, tools and task—a system distributed by design, much like the 

engineering of a classroom “community of learners” in the work of Brown, Campione and 

colleagues (Brown et al., 1993; Brown & Campione, 1994). And whereas successfully steering a 

large ship may require patterned enactment of particular roles and responsibilities, successful 

problem-solving performances and individual student learning opportunities in the Code Breaker 

case appear to depend more on the successive reorganization of elements in that system by 

participants. Indeed, as Bazerman (1996) notes, in the Hutchins example “[t]he cognitive task is 

to align the self with narrowly defined pre-determined roles and behaviors—a very different 

situation than most studies of collaborative work, in education or industry, where the emphasis is 

more on individualized and improvisatory behaviors to meet personal perceptions and needs” (p. 

53). Thus, while much of human activity on broader timescales involves reifying effective forms 
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of practice and stabilizing efficient divisions of labor, the relevance of distributed cognition to 

classroom collaboration may hinge on the extent to which learners have ongoing opportunities to 

adaptively reorganize ensembles of human and material resources in the dynamical system in 

which they participate12. 

Distributed Problems and Collaborative Tasks 

Importantly, these different configurations at the level of the distributed group provided 

correspondingly different opportunities for individual students to reason with representational 

tools and participate in collaborative learning processes. In some cases these reorganizations 

found the groups moving toward problem-solving efficiencies that minimized the necessary 

number of representational resources, and often also the number of participating students. For 

example, over the course of Episodes Two through Four, Group One moved from four students 

seeking and trying to interpret the same information across several displays, to two students 

seeking and interpreting similar information from a similar display, to one student drawing 

inferences from that information independently. On the other hand, the process of reorganizing 

the group into more effective arrangements was a central source of learning opportunities for 

individual participants, particularly when, as in the cases of Monique in Episodes Two and Three 

and Jason in Episode Seven, those arrangements relied on coordination of meaning for a given 

representation in order to allow consistent interpretations when students did not share a common 

view. In each of these cases, the group’s efforts to bring participants’ interpretations into 

alignment across different views marked learning opportunities for individual students. 

                                                
12 In this sense, the relevant analog from Hutchins’ analysis to classroom learning activity is not the routine of the 
fix cycle, but rather the crisis prompted by a failed gyrocompass. Such disruptions of regular practice, so undesirable 
and potential hazardous in the workplace or in the wild, are precisely the moments to strive for in the design of 
learning environments. 
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Ultimately, then, simply having linked multiple representations of a function being focused 

upon by different members of a collaborating group did not guarantee the collaborative 

participation of the students in that group, any more than having linked multiple representations 

of a function made self-evident that they referenced that common function. To the extent that 

opportunities for student interaction and participation were missed in these instances, they may 

be partly explained in terms of limitations in the present design. For example, the Equation and 

Function Table were in different locations in the display window and a significant amount of 

scrolling was required to toggle between them. On the other hand, the closer proximity of the 

Equation and Graph allowed them to be simultaneously analyzed by a single participant, even 

though one student was assigned responsibility for editing the former display and another for 

observing the latter. This proximity may have minimized the need for students to establish and 

coordinate collective interpretations across those different displays—in particular, to engage in 

the kinds of efforts to coordinate interpretations of the Function and Frequency tables and 

Equation by CJ and Vince, or of values in the Word Frequency Table observed by Jessica or 

Monique as Tina sought to draw inferences about candidate function parameters. 

The empirical consequences for the student groups of these and other design decisions might 

be interpreted in terms of a tension between affordances for individual users and groups. The 

proximity of Equation and Graph allowed them to be simultaneously scrutinized—and thus 

engaged as dynamically linked displays by a single user. By contrast, the Equation and Function 

Table could only be simultaneously displayed, and so dynamically linked, across multiple 

students’ devices. Similarly, the choice to allow each student to move freely among all 

representational tools rather than restricting their views to their respective role-assigned displays 

had important implications for student collaboration. While some students, as illustrated by the 
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participants in Group One throughout Episodes One to Four, tended to adhere closely to their 

assigned roles and views, others more frequently disregarded those assignments and moved 

among different views during a task. The latter approach was often demonstrated by Group Two, 

particularly as several students successively shifted their displays in order to consider common 

views in Episode Five, and when Vince moved to Jason’s view in order to complete the task by 

himself at the end of Episode Seven. Students did work to coordinate interpretations of 

representational tools both in instances when they shared common views, and when they 

examined different displays. So while a more rigid design for differentially distributing views 

might ensure greater interdependence among participants and yield more opportunities for 

coordinated conversation across different displays, the more flexible design presented here did 

appear to have some advantages for allowing students to coordinate interpretations of common 

displays, and to more fluidly seek out different distributions of participants and displays.  

In a similar vein, opportunities for collaboration with multiple representations of functions 

might be substantially enriched through multiple mechanisms for manipulating those functions. 

While the symbolic expression of the candidate function—and thus the single student assigned 

responsibility for that expression—was the ‘driver’ of transformations across all dynamically 

linked representations in the present design, and those transformations were limited to discrete 

and unitary adjustments of each parameter, other multiple representation environments have 

explored a variety of alternate approaches to user input and control (Kieran & Yerushalmy, 

2004). Kaput (1998) stressed the potential of bidirectional links among representations, such that 

inputs for multiple linked representations allow the direct manipulation of a graph as an alternate 

means of transforming the expression. Building a networked and collaborative environment with 

bidirectional links would allow opportunities for each student in the group to simultaneously 
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engage in the generation or manipulation of representational artifacts, and thus might 

substantially enrich the possibilities for coordinated action and interpretation across different 

displays. 

CONCLUSION 

Multiple representations hold great promise for organizing novel learning environments and 

activities. Multiple representations of function, in particular, have provided the foundation for a 

variety of alternative secondary mathematics curricula and novel technology-based learning 

environments that capitalize on the rich conceptual linkages among symbols, graphs, tables and 

situations. Representational tools and inscriptions also play pivotal roles in mathematical forms 

of interaction and communication, and in the coordinated efforts of multiple people to 

accomplish complex tasks using such representations. These intersections of representational 

affordances and communicative activities provide fertile terrain for fostering participation in 

mathematical practices, for orchestrating collaborations, and for theorizing about learning.  

However, the potentials of multiple representations for advancing learning are not always 

easily realized. The richness and complexity of representational and collaborative relationships 

pose challenges for successfully engineering learning experiences. By designing a learning 

environment for collaboration with multiple representations, and analyzing two teams of students 

working together in that environment over several weeks, we sought to better understand the 

conditions for success. Our findings address both theoretical and practical issues in designing for 

collaboration with multiple representations. 

Regarding theory, our analysis foregrounds the need for a perspective on collaborative 

learning that elaborates on Hutchins’ seminal analysis of distributed cognition. Whereas 

Hutchins’ case of cognition ‘in the wild’ depends on stable roles and subtle arrangements of 
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knowledge artifacts that emerge in the course of the slow development of a cultural practice 

(ship navigation), our classroom cases argue that students need rapid successions of 

opportunities to reconsider and reorganize their roles and to experiment with different meanings 

and uses of flexible tools in the context of tasks with carefully sequenced levels of difficulty. 

Moreover, our analysis shows that learners do not always apprehend or appropriate designers' 

intended meanings either for representations, or for pre-assigned collaborative roles. They do, 

however, show considerable competence and creativity in finding meanings and uses for 

multiple representations. Consequently, educators should not assume that collaboration designs 

with multiple representations will produce intended results, especially in a short-term activity. 

Such designs should seek a productive balance between the advantages of more fluid and more 

rigid assignments of unique representations to students, and between individual and group uses 

of representations. If as in the present case these representations are subtle and complex, it is 

likely that teams of learners will need an extended sequence of increasingly challenging tasks to 

both (a) discover effective collaboration patterns and (b) successively reorganize their uses of 

multiple representations. For both design and instruction, we therefore recommend seeing the 

links among representations not as fixed by a common referent or following predetermined ways 

of relating, communicating and coordinating action, but rather as emergent webs of relations to 

be continually drawn, reorganized, and reestablished through complex collaborative problem-

solving activity. 
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Figure 1. A student group using the Code Breaker software with handheld computers
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Figure 2. Code Breaker array of representational tools 
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Letter X Y   Letter X Y 

 2.4 12    5.6 67 

 2.7 17    5.9 72 

C 3 22    6.5 82 

 3.6 32    6.8 87 

 4.2 42    7.7 102 

 4.5 47   H 8 107 

 4.8 52    8.3 112  

Letter X Y   Letter X Y 

B 2.1 12   E 2.1 67 

B 2.1 17   E 2.1 72 

C 3 22   F 3 82 

C 3.1 32   F 3.1 87 

D 4.1 42   G 4.1 102 

D 4.1 47   H 4.1 107 

D 4.1 52   H 4.1 112  
Figure 3a. Inverse function table Figure 3b. Inverse function table with bug 

 



Distributed by Design 
 

77 

 

 

Inverse Function Table: 
Letter X Y   Letter X Y 

K 11 11     59 
O 15 15     63 
S 19 19     67 
W 23 23     71 
  27     79 
  31     83 
  35     87 
  39     91 
  43     95 
  47     99 
  51     107 
  55        

Figure 4a. Graph for y=x Figure 5a. Inverse Function Table for y=x 

 

Inverse Function Table: 
Letter X Y   Letter X Y 

E 5.1 11     59 
G 7.1 15     63 
I 9.1 19     67 
K 11.1 23     71 
M 13.1 27     79 
O 15.1 31     83 
Q 17.1 35     87 
S 19.1 39     91 
U 21.1 43     95 
W 23.1 47     99 
  51     107 
  55        

Figure 4b. Graph for y=2x Figure 5b. Inverse Function Table for y=2x 

 

Inverse Function Table: 
Letter X Y   Letter X Y 

C 3.1 11   S 19.1 59 
E 5 15   U 21 63 
F 6.1 19   V 22.1 67 
G 7.1 23   W 23.1 71 
I 9 27     79 
J 10.1 31     83 
K 11.1 35     87 
M 13 39     91 
N 14.1 43     95 
O 15.1 47     99 
Q 17 51     107 
R 18.1 55        

Figure 4c. Graph for y=3x Figure 5c. Inverse Function Table for y=3x 

 

Inverse Function Table: 
Letter X Y   Letter X Y 

B 2.1 11   N 14.1 59 
C 3.1 15   O 15.1 63 
D 4.1 19   P 16.1 67 
E 5.1 23   Q 17.1 71 
F 6.1 27   S 19.1 79 
G 7.1 31   T 20.1 83 
H 8.1 35   U 21.1 87 
I 9.1 39   V 22.1 91 
J 10.1 43   W 23.1 95 
K 11.1 47   X 24.1 99 
L 12.1 51   Z 26.1 107 
M 13.1 55        

Figure 4d. Graph for y=4x Figure 5d. Inverse Function Table for y=4x 
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Figure 6. Configuration of Representations and Participants in Episode 1 

Candidate 
(Tina) 

Graph 
(Tina, Shir) 

IFT 
(Jessica) 

Multiple Candidate 
Function Representations 
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Figure 7. Graph of y=-3x 
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Inverse Function Table: 
Letter X Y   Letter X Y 

  3     -49 
  -1     -53 
  -9     -57 
  -13     -65 
  -17     -69 
  -21     -73 
  -25     -77 
  -29     -85 
  -41     -93   

Figure 8a. Monique’s view of the WFT Figure 8b. Jessica’s view of the IFT 

 
Figure 8c. Tina’s view of the Coded Text 
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Figure 9. Configuration of Representations and Participants in Episode 2 

Candidate 
(Tina) 

Graph 
(Shir, Tina) 

IFT 
(Jessica) 

Coded Text 
(Tina) 

WFT 
(Monique) 

Multiple Candidate 
Function Representations 
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Figure 10. Tina’s view of the Graph 
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Figure 11. Configuration of Representations and Participants in Episode Four 

Equation 
(Tina) 

Graph 
(Tina) 

WFT 
(Monique) 

Paper 
(Tina) 

Multiple Candidate 
Function Representations 
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Figure 12. Inverse function bug in the Graph 
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Figure 13. Configuration of Representations and Participants in Episode Five 

Candidate 
(Jason, CJ) 

Graph 
(CJ, V, J) 

IFT 
(CJ, V) 

Frequency 
(Vince) 

WFT 
(Vince) 

Multiple Candidate 
Function Representations 
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Figure 14a. Jason’s view of the Equation 

and Graph 
Figure 14b. Vince’s view of the Frequency 

and Function Tables 
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Figure 15. Configuration of Representations and Participants in Episode Six 

Multiple Candidate 
Function Representations 

Equation 
(Jason) 

Table 
(Vince) 

Graph 
(Jason) 

Frequency 
(Vince) 
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Figures 16a and b. “Close” values in the Function and Frequency Tables. 
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Table 1. Decryption tasks13 and solution strategies for Group One. 

Task Encoding Function 

Drew Function Inferences 
from Candidate 

Representations Only 

Drew Function Inferences from Links 
between Candidate and Ciphertext 

Representations 
1 4x - 6   
2 -2x   
3 4x + 7 Yes (Solved)  
4 -4x + 7 Yes (Solved)  
5 6x - 14 Yes (Solved)  
6 -6x + 14 Yes  
7 6x - 14  Yes (Solved) 
8 x2 + 7  Yes (Solved) 
9 2x2 + 7  Yes (Solved) 
10 2x, offset=3  Yes (Solved) 
11 -2x + 1, offset=2  Yes (Solved) 
12 -x2-1, offset=-2  Yes (Solved) 
13 37x3 – 51, offset=-14 Yes  
15 -20x3 + 16, offset=-1  Yes (Solved) 

 

                                                
13 Gaps in these sequences of tasks indicate instances (task 14 for Group One, and tasks 1, 3, and 13 for Group Two) 
in which the group downloaded and worked on a code at least briefly, but the data available were inadequate for 
analysis of the strategies employed. 
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Table 2. Decryption tasks and solution strategies for Group Two. 

Task Encoding Function 

Drew Function Inferences 
from Candidate 

Representations Only 

Drew Function Inferences from Links 
between Candidate and Ciphertext 

Representations 
2 -2x2 - 2   
4 5x + 7 Yes  
5 2x Yes (Solved)  
6 -2x Yes (Solved)  
7 4x + 7 Yes (Solved)  
8 -4x + 7 Yes (Solved)  
9 5x, offset: 5 Yes  
10 -2x + 1, offset: 2 Yes  
11 5x+21 Yes  
12 5x3 + 6, offset: 4 Yes  
14 -ax2 + b Yes  
15 -3x2 – 1, offset  Yes 
16 12x3 – 15, offset: 13  Yes (Solved) 
17 19x3 + 1, offset: 5  Yes (Solved) 

 
 


