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ABSTRACT 

In this paper, we describe research conducted around a 7-week 
curriculum designed to introduce middle school students to 
computer science with a focus on algorithmic thinking and 
programming. The pedagogical ideas employed in this curriculum 
were drawn from past research. Empirical investigations over two 
studies in a public middle school in the US examined changes in 
students' understanding of algorithmic constructs and the factors 
affecting that learning. Multi-level analyses revealed that students 
in both studies (1) achieved substantial learning gains in 
algorithmic thinking skills and significant growth towards a more 
mature understanding of computing as a discipline, and (2) found 
certain CT ideas and constructs more difficult than others. Prior 
computing experiences and math and English ability were found 
to be predictors of learning outcomes. Extracurricular experiences 
with technology also appeared to impact outcomes. 

Keywords 
Middle School; Deeper Learning; Learning Factors; K-12 
Computer Science Education; Computational Thinking.   

1. INTRODUCTION 
The rationale for introducing computing in K-12 in order to 
advance computational thinking (CT) is compelling [10,34,40]. 
While needs of high school students in the US are being 
prioritized through courses such as Exploring Computer Science 
(ECS) and AP CS Principles, there is a growing belief that 
experiences with computing must start at an earlier age. Middle 
school years are formative and key for cognitive and social 
development in the K-12 schooling journey especially with regard 
to future engagement with STEM fields [35]. Experiences with 
computing should therefore make middle school amenable to 
diverse future opportunities as part of students' possible selves.  

While there has been some growth in structured middle school 
computer science (CS) curricula, the development of deeper, 
transferable CT skills in a classroom setting is yet to be 
empirically validated. The goal of this research was to address this 
through designing and empirically studying the use of a structured 
curriculum for middle school that leverages pedagogical ideas 

from the learning sciences and computing education research 
about how children can best develop algorithmic thinking and 
programming skills. We adopted an iterative process to design, 
refine, and study our introductory middle school CS course—
Foundations for Advancing Computational Thinking (FACT) to 
empirically investigate students’ development of CT skills.  

This paper focuses on presenting our research around answering 
the following research questions—RQ1: What is the variation 
across learners in learning of algorithmic flow of control  (serial 
execution, looping constructs, and conditional logic) through 
FACT; RQ2: What factors influence these learning outcomes? 
The paper is organized as follows. A survey of relevant related 
work presents a backdrop to the research framework and the 
rationale of FACT’s curriculum, pedagogy and assessment design. 
The research methodology follows including a brief description of 
the pedagogical designs used to introduce students to computing 
and algorithmic thinking, and the empirical studies. The Results 
section provides results in the form of descriptive statistics and 
also describes the mixed-methods analyses that were used to 
examine what factors, such as prior experiences and learner 
backgrounds, explained the variance observed in learning 
outcomes. The paper ends with a discussion and synthesis of the 
main findings of this research as well as their implications.  

2. RELATED WORK 
Much of the CT research involving middle school children in the 
US has centered on introductory block-based computational tools 
such as Scratch, Alice, Agentsheets, Blockly, App Inventor etc. 
Engaging activities such as programming games and apps are 
used to foster fluency and motivation in computational problem 
solving. Tangible computational tools such as robotics kits and e-
textiles (using Lilypad Arduino) have also been used and studied. 
Until recently, most of these have occurred in informal settings. 
 
In the formal middle school context, research studies have been 
conducted as students engage with CT through game design in 
Alice and Agentsheets [4,28]. Some others have aimed to teach 
computational thinking in the context of middle school science 
[e.g. 32,38]. In Denner et al.’s work, students worked through a 
series of self-paced instructional exercises in Alice and then 
designed and developed their own games. Students were assessed 
using a specially designed assessment [37]. They summarize their 
experiences elsewhere by acknowledging that while computer 
game programming (CGP) in environments such as Alice have 
proved to be “a good strategy to attract underrepresented students 
to computing in middle school and to engage them in 
programming concepts and systems thinking, CGP does not 
automatically result in learning, and without some intention on the 
part of the teacher, it will not result in them learning specific 
programming concepts.” [4]. Previous studies around children and 
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LOGO [19,22,25,26] endorsed the merits of such an approach and 
underscored that teachers as well as instruction play a 
substantial role in what and how students learn. 
 
In taking an approach focusing on teaching the foundational 
concepts of CS through the structured use of Scratch, FACT is 
similar to efforts in Israel and the UK [31,41]. Our pilot effort 
involved the design and evaluation of a 7-week “mini-course”, to 
give students a brief introduction to CS and computational 
problem solving in order to raise interest and awareness in CS and 
serve as a good foundation for future computing experiences. 
More importantly, given its duration, FACT can potentially be 
taught as a unit in existing math, science or technology elective 
periods. Our work also employs pedagogy for a structured 
curriculum that makes the teaching of specific CS concepts and 
vocabulary more intentional, with the goal to consciously teach 
CS. Since examining students’ programming artifacts alone to 
assess learning can be misleading [19,23], we assess young 
learners’ understanding of concepts of CS through designed 
assessments in addition to artifacts created by students for 
evidence of their understanding of computational concepts. This 
last aspect distinguishes FACT from other efforts in the US [30].  
 

3. METHODOLOGY 
This research effort involved two iterations that examined the use 
of FACT in a public middle school classroom setting. The first 
iteration was in a traditional face-to-face classroom setting, 
whereas the second iteration involved investigations on a blended 
model of learning using an online version of FACT designed and 
created on Stanford University’s OpenEdX MOOC platform. The 
research involved designing the FACT curriculum; engineering a 
blended learning experience using an online version of FACT; 
and empirically investigating FACT’s use in a classroom to 
answer the research question outlined earlier. 

3.1 FACT Curriculum  
The curriculum (Table 1) was inspired by the 36-week long ECS 
high school curriculum [8], and includes topics on algorithmic 
problem solving and programming (in Scratch) that the authors 
considered foundational and appropriate for middle school 
students. These map roughly to Units 1, 2 and 4 of ECS. The 
entire curriculum design effort was guided by goals for “deeper 
learning” [27], attending to the development of cognitive abilities 
in addition to interpersonal and intrapersonal abilities (such as 
collaboration and communication). 
3.1.1 Features for Fostering Deeper Learning 
To target deeper learning of algorithmic problem solving and to 
address issues in learning to program that novice programmers 
face [6,14,25,29], FACT’s curriculum design leverages available 
learning sciences literature. The pedagogy uses a scaffolding and 
cognitive apprenticeship [2] approach to model the process of 
programming through the use of (worked) examples [16]. This 
includes modeling and constructing solutions to computational 
problems in a manner that reveals the underlying structure of the 
problem, and the process of composing the solution in pseudo-
code or in Scratch. Drawing on past research [9], computing 
vocabulary and CT language are used during this scaffolding 
process. FACT also consciously engages with students’ narrow 
perceptions of CS to help them see computing in a new light by 
using publicly-available videos (bit.ly/CS-rocks) exemplifying 
computing as a problem-solving discipline with applications in 
many real-world creative contexts and disciplines [12].  
 

Table 1. 7-week FACT Course for Middle School 
Unit 1 Computing is Everywhere! / What is CS? 
Unit 2 What are algorithms & programs? Computational solution 

as a precise sequence of instructions. 
Unit 3 Iterative/repetitive flow of control in a program: Loops  
Unit 4 Representation of Information (Data and variables) 
Unit 5 Boolean Logic & Advanced Looping 
Unit 6 Selective flow of control: Conditional thinking  
 Final Project (student’s own choice; individual or pairs) 

FACT emphasizes “learning by doing” [1] for students through a 
mix of directed projects and meaningful, open-ended projects in 
Scratch including a substantive culminating project that students 
were encouraged to do in pairs (Table 2). Frequent low-stakes 
multiple-choice formative assessments were designed to ensure 
learners stay engaged with the content and learning goals of the 
course, and to provide feedback both to the learners and the 
teacher. These also include questions inspired by Parson’s puzzles 
[24]. FACT aims to foster a deeper understanding of foundational 
concepts by providing learners opportunities to work with plain 
English, pseudo-code as well as programs coded in Scratch. At 
occasional junctures during the course there are opportunities to 
examine the same algorithm put together in a language besides 
Scratch. Student learning was also assessed through the final 
open-ended game design project of choice. FACT’s curriculum 
and assessments are detailed in earlier publications [13,14,15]. 
 

Table 2. Sample programming projects in Scratch 
Programming Assignments  Algorithmic ideas 
Share a recipe Sequence of instructions 
(Scratch) Make a life cycle of choice 
to use in a 6th grade science class 

Serial execution 

(Scratch) Draw a Spirograph from a 
polygon of choice  

Simple nested loop (also, 
creative computing (CC)) 

(Scratch) Create a simple animation  Forever loop 
(Scratch) Generic polygon maker Variables; user input 
Look inside Scratch code and 
explain the text version of code 

Algorithms in different 
forms 

(Scratch) Draw a ‘Squiral’ Loops, variables (& CC) 
Open-ended project (in pairs): 
Create a game using “Repeat Until” 

Loops ending with 
Boolean condition 

(Scratch) Maze game Event handlers; 
Conditionals 

(Scratch) Guess my number game  Loops, conditionals, 
variables, Boolean logic 

(Scratch) Final project of choice All CT topics taught 

3.2 Study and Data Measures 
Empirical studies were conducted in a public middle school 
classroom in Northern California. Two iterations (Study1 and 
Study2) of research were conducted with two different cohorts in 
the same ‘Computers’ elective class that met four days a week for 
55 minute periods. The student samples comprised 7th and 8th 
grade students (Table 3; ELL=“English Language Learners”). In 
Study1, the course was taught face-to-face by the first author. 
Study2 was conducted in the same classroom with a new cohort 
and used a refined version of FACT (based on learning from 
Study1) on OpenEdX for blended learning and comprised a mix 
of individual and collaborative activities. The regular classroom 
teacher, who did not have a background in CS or programming, 
was present in the classroom at all times assisting with classroom 
management and also “learning right alongside the students.”  



Table 3. Student samples in Study1 & Study2 

Study Mean 
Age Male Female Grade 

7 
Grade 

8 ELL Special 
Ed. 

1 12.9 21 5 15  11 4 2 
2 12.3 20 8 16 12 3 1 

3.2.1 Data Measures  
The following constituted the main data measures: 

• Prior Experience Survey: Students were given an extensive 
survey on prior experiences in technology and computational 
activities, especially programming. 

• CS Interest & Attitudes Pre-post Survey: Inspired by [7] 
• Pre-Post Measures of CT: Students were given pre-post tests 

that measured their understanding of computational concepts. 
The pretest and posttest used items from prior research 
involving middle school CS with Scratch [7] and included 6 
out of 9 questions from the Israel National Exam described in 
[42]. We did not incorporate the other three questions, as we 
did not have details on them prior to our study’s launch. 

• Course Experience Survey: to gather feedback from learners 
for improvements for future iterations. 

• School data: demographic information including age, gender, 
and academic placement (English, Math, special needs) 

4. ANALYSIS & RESULTS  
In order to answer RQ1, pre-post data were first analyzed 
separately for each study using descriptive statistics, paired t-tests 
and non-parametric tests to study within-subject differences from 
pre-to-post test. A comparative analysis was also conducted on the 
six questions of the posttest that were employed in the National 
CS Exam administered to about 4000 middle school students in 
Israel in 2012 [42]. 

Table 4. Pre- and Posttest Scores (out of 100), Study 1 & 2 
 Pretest Posttest 
Study Mean  (SD) Mean (SD) t-stat p-value 

1 36.3  (18.2) 79.4 (17.5) -17.3 <0.001 
2 28.1 (21.18) 81.6 (21.0) -15.5 <0.001 

Note: Non-parametric Mann-Whitney (Wilcoxon) rank sum test was also 
conducted to test the difference between the pretest and posttest, and the 
results remained significant. 
 

Table 5. Posttest Scores by CT Topics, Study1 & Study2 
 Study 1 Study 2   

 
Mean (SD) Mean (SD) t-stat p 

Overall 78.6 (17.1) 81.6 (21.2) -0.6 0.56 
By CS Topic 

    Serial Execution 97.4 (13.1) 91.1 (20.7) 1.4 0.18 
Conditionals 84.5 (19.0) 84.9 (20.5) -0.1 0.94 
Loops 74.1 (21.9) 77.2 (26.3) -0.5 0.64 
CS Vocabulary 68.2 (17.9) 77.4 (22.2) -1.7 0.10 
(Note: t-statistic and p-value refer to the test of difference in the mean 
scores for Study1 and Study2) 

Relevant learning outcomes pertinent to RQ1 are shown in Tables 
4 and 5. On the posttest score, there was no significant difference 
between the studies. The pretest scores in the two studies were 
also not statistically different. The pre-to-posttest effect size 
(Cohen’s d) on the CT test was roughly 2.4 in both studies. 
Learners found serial execution to be easiest and loops, especially 
those involving variable manipulation, the most difficult to grasp 
(Table 5). The comparative analysis with the results from the 
Israeli nationwide exam revealed comparable or slightly better 
performances by our students (Figure. 1; Question numbers are 
the same as in [42]). Some gender differences were observed with 

girls performing better than boys, however the small number of 
females in the samples precluded drawing deeper conclusions.  

 
Figure 1: Comparison of Student Performance in Study1 & 

Study2 vs. 2012 Israel results (on 6 of 9 questions) 
To answer RQ2, factor analyses on prior experience variables and 
multivariate regressions were conducted to determine which 
factors predicted outcome measures of interest (Section 4.1).  

4.1 Factors Influencing Learning Outcomes 
What factors explain these differences in learning outcomes? 
Learning is influenced by several factors, including learners’ prior 
experience, interests and attitudes towards the subject being 
taught in addition to academic preparation, especially in 
foundational subjects such as mathematics and English [36]. 
While it is acknowledged that mathematics and English levels are 
often a function of learners’ SES (socio-economic status), 
inclusion of SES variables was outside of the scope of this 
research (as was school context since both studies were conducted 
in the same school). In order to explain the variability, factor 
analyses and multivariate regressions analyses were carried out.  

4.1.1 Rationale for combined regression analyses  
Factor analyses and regressions were conducted on the 
combined sample from the two studies to gain more statistical 
power with a larger sample size (N=54). The justification for 
combining the data was as follows: Since both studies were 
conducted in the same school and classroom, there were several 
similarities among the participants and school settings. Students in 
both studies came in with similar levels of knowledge of 
computing as tested by the pretest (there was no statistical 
difference between the studies). The two groups were similar in 
their mathematics and English abilities as measured by the STAR 
California state test, and the responses on the survey questions 
probing interests and attitudes towards CS both before and after 
the intervention were not statistically different between groups. 
Students’ performances on the posttest were also not statistically 
different across the two studies (Table 5).  

4.1.2 Factor Analysis on Prior Experience Survey 
As a first step towards using multivariate regression analyses to 
explain the effects of the several possible independent variables 
on the main outcomes of interest, it was necessary to analyze 
several item-level responses on relevant questions (Table 6) in the 
prior experience survey for underlying patterns via exploratory 
factor analytic procedures. Factor analysis is a multivariate 
statistical approach commonly used for interpreting self-reporting 
questionnaires [39]. 



Table 6. Prior Experience Survey Items in Factor Analysis  
Q5: (Yes/No) "Have you ever written a computer program?" 

Q9: (9 items) "How many times have you ever created the 
following using some software on the computer?" [List] 
Q11: (13 items) "How would you describe your level of 
experience with the following computer 
applications/equipment?" [List e.g. Scratch/Alice/Tynker] 
Q12: (9 items) "How many times do you use a computer to do 
each of the following" [List e.g. play online multi-user games] 
Note: Q9 measured depth of technology experience on a 4-point Likert 
scale– 1=never to 4=more than six times; Q11 measured experience 
level on a 5-point Likert scale from 1=“I don’t know what it is” to 
5=“I’m an expert and can teach someone how to use it”; Q12 measured 
frequency of computational and media creation on a 8-point Likert 
scale– 1=Never to 8=Several times a day 

Three main “prior experience factors” were found. We titled them 
Coder, Media Creator, and Online Consumer as described in 
Table 7.  Pearson’s correlation tests between the three factors 
indicated the correlation coefficient was less than 0.1 suggesting 
that these were 3 distinct types of students in the study sample. 
Pearson correlations also suggested that math ability levels (as 
measured by STAR scores) were significantly negatively 
correlated only to Online Consumer, and positively correlated 
with Coder and Media Creator. The implications of these 
correlational findings are discussed further in Section 5. 

Table 7. Descriptions of Prior Experience Factor Variables 
Prior Exp 
(PE) Factor Description 

PE Factor 
1: Coder 

 

Strong on programming experience.  Especially 
strong components of factor 1 are a positive 
response on “have you ever programmed 
before?” and experience with coding languages. 

Factor 2: 
Media 
Creator 

Little to no coding experience but strong 
association with digital media creation activities 
such as creating digital movies, music, audio. 

Factor 3: 
Online 
Consumer 

Little to no experience with computer 
programming or creating digital media, however 
strong associations with playing computer & 
multi-user online games, watching movie videos. 

4.1.3 Multivariate Regressions  
Based on prior research [36], it was ascertained that the following 
variables could influence learning outcomes in FACT: 
• Prior knowledge of computational constructs. 
• Technology fluency and prior experience with computation.  
• Interest in and attitudes towards CS. 
• Academic preparation (as measured here by mathematics and 

English levels in STAR California State tests). 
• Learning issues (English Language Learner, or ELL). 
• Demographics (age and gender). 
Some variables were dropped early on as they were not found to 
be significant predictors of outcomes of interest in either uni-
variate or multivariate regressions with any combination of 
predictor variables. Age was one such variable. The stepwise 
regressions used to determine the best model thus included:  
 
1. Mean of the CS attitudes survey items.  
2. Mean of the ‘future interest in CS’ survey item calculated for 

each student.  
3. Prior experience factors (the three factors identified above). 
4. Most recent Math STAR test score. 

5. Most recent English STAR test score. 
6. ELL status. 
7. Gender. 
8. Pretest score (for posttest). 

Following stepwise regressions, interest and attitudes variables 
were dropped due to lack of significance as predictors of outcome 
variables, as were gender and English STAR score. Table 8 
presents the final full regression used to explain the variation in 
pretest and posttest scores. 

Table 8. Final regression for factors influencing outcomes 
 

 

Posttest  Pretest 
Variable 

 

β SE  β SE 
Pretest  

 

0.39*** 0.11  – – 
Math STAR  

 

0.40** 3.22  0.34** 2.79 
ELL 

 

0.08 7.98  0.06 5.61 
PE Factor1 (Coder) 

 

0.14 1.79  0.62*** 3.10 
PE Factor2 (Creator) 

 

-0.01 2.07  0.13 1.64 
PE Factor3 (Consumer) 

 

-0.16 1.58  -0.02 1.53 
Constant 

 

– 13.82  – 13.39 
N                    

 

54   54  
Adjusted R2 

 

0.53   0.49  
*p < 0.5. **p<0.01. ***p<0.001 
 

4.1.4 Performance Based on Prior Experience  
While prior programming experience as measured by the pretest 
was found to be relevant for the posttest, the three prior 
experience factors did not predict performance on the posttest. 
This suggested that FACT helped all students regardless of prior 
experience as measured by the self-report survey. To further 
examine how the prior experience factors affected learning 
outcomes, a median split was used to divide students into ‘high’ 
and ‘low’ groups for the 3 factors– “High Coder”/“Low Coder”, 
“High Creator”/“Low Creator”, and “High Consumer”/“Low 
Consumer”. As expected, being a High Coder (as opposed to Low 
Coder) was beneficial for both pretest and posttest scores on the 
CT test. Since neither Media Creators nor Online Consumer 
factors were high on prior programming experience, it was also 
useful to examine how these sub-groups fared in the posttest. In 
general, learning gains were higher for High Creator than Low 
Creator students, and being a Low Consumer helped post-scores 
and learning gains more than being a High Consumer. These 
differences weren’t significant, but were suggestive that perhaps 
significant relationships may emerge with larger samples. 

5. DISCUSSION 
Based on the quantitative results and analyses for the two studies, 
it appears that FACT helped all learners attain substantial gains in 
learning of basic algorithmic flow of control in computational 
solutions. Serial execution was the easiest to learn, as expected. 
Between conditionals and loops, learners found loops harder to 
tackle. Most of the assessment questions concerning loops 
required manipulation of variables as well, which seemed to be 
the hardest topic for students to grasp (based on OpenEdX 
dashboard data on formative quiz performances [11,15] and 
assigned programming activities). Both these aspects have been 
known to be particularly difficult for novice programmers [25,33]. 
Despite our conscious efforts, students struggled with these topics. 
Extra attention needs to be given as to how introductory courses 
could be improved to help learners build deeper understanding of 
variables and the ways in which they work in loops specifically, 



and in computational solutions, in general. Some of this may also 
be related to the level of math preparation as discussed below. 

5.1 Prior Math and English Preparation 
Regression analyses revealed math performance was a positively 
correlated predictor for CS posttest performance (even when 
controlling for the pretest). This correlation has been found in past 
research [21]. It is not entirely surprising given that abstraction is 
key to computing and a key skill taught in math [5,18]. Given the 
difficulties students had with loops and variables (which share a 
strong relationship with abstract and algebraic thinking) in 
comparison with conditionals, the link to prior math preparation 
needs to be probed further. This issue is also significant because 
students’ mathematics preparation historically co-varies with 
socio-economic status and other indicators of diversity.  

English Language Learner (ELL) status was a negative predictor 
for the text-heavy transfer test [discussed in 14,15]. However, 
ELL students showed high levels of motivation for their open-
ended authentic final projects of choice. They performed better on 
the associated interviews even though their projects were on the 
lower end of the complexity scale compared to other class projects 
[15]. We hope to re-examine these aspects of our curriculum as 
we iterate on it and study it further with more diverse student 
populations. However, they do suggest that curricula must pay 
closer attention to diverse levels of math and English preparation 
and ensure that all learners succeed in introductory CS.   

5.2 Out-of-school Technology Experiences 
The curriculum helped all students achieve significant learning 
gains irrespective of prior experience (as measured by the self-
report survey). Not surprisingly, prior programming experience as 
measured by the pretest was found to positively predict 
performance on the posttest. Regressing posttest performance on 
high and low levels of prior experience factors (that resulted from 
factor analyses on prior experience survey data) revealed that 
among students who did not have prior programming experience, 
those with experience in media creation generally did better than 
those that did not, and those that engaged only in online gaming 
and video watching (to the exclusion of programming or media 
creation activities (i.e. the Online Consumers), did worse. Having 
a high value for the Online Consumer factor was also correlated to 
poor mathematics and English ability (as measured by STAR 
tests). This perhaps points to other factors such as low SES and a 
lack of out-of-school experiences that may be considered 
intellectually enriching. More broadly, these results suggest that 
the nature of out-of-school technology experiences have a bearing 
on computational learning. These factors have important 
implications for curriculum and assessments design, and support 
the rationale for courses such as ECS that have a strong equity 
focus as we attempt to ensure computing for all. 

6. CONCLUSION & IMPLICATIONS 
This research describes two studies that were conducted in a 
public school. The studies were conducted in an elective class, 
which meant learners (who were also mostly male) came into the 
course with generally high interest and motivation. Despite this 
limited generalizability, the research makes several unique 
contributions. It is perhaps the first structured online/blended 
introductory middle school curriculum that has been through 
rigorous empirical investigation, where computational thinking 
learning outcomes are measured through pre-post assessments. It 
is a curriculum that has been shown to result in learning gains (in 
the context in which it was studied) and to foster CT skills in 
middle school students as measured by assessment items used in 

prior research including a national CS exam in Israel. It serves as 
an example of course designed on an online platform that 
effectively employs an iterative research methodology to refine a 
curriculum aiming to foster learning in a blended classroom 
setting. The conscious attention devoted to teaching (and 
assessing) for transfer, as well as attending to perceptions of 
computing as a discipline through an engaging corpus of publicly 
available videos (presented in detail in prior publications [12, 
15]), are also unique aspects of this research. Breaking down pre-
posttest by algorithmic constructs to examine learning on these 
different aspects highlights targets of difficulty in middle school 
students. This research thus makes contributions to the design of 
curricula and assessments using block-based environments such 
as Scratch, Blockly, and Alice that are popularly used today.  
The finding that students with low prior mathematics achievement 
experienced difficulties in learning CS in middle school has broad 
importance- it points to a need to build abstraction skills that 
math prepares students for. Other recent research also points to 
the relevance of English and math skills in environments such as 
Scratch for younger grades [17]. Future directions for this effort 
involve iterating on the curriculum to attend more closely to prior 
math preparation and to make the curriculum more accessible to 
all students by continuing to empirically examine its use with 
broader audiences of middle school students and teachers.  

7. ACKNOWLEDGMENTS 
We gratefully acknowledge grant support from the National 
Science Foundation (NSF #1343227 and NSF #0835854).  

8. REFERENCES 
[1] Barron B., & Daring-Hammond, L. 2008. How can we teach 

for meaningful learning? In Darling-Hammond, L.,et al. 
Powerful learning: What we know about teaching for 
understanding. San Francisco: Jossey-Bass. 

[2] Brown, J. S., Collins, A., & Newman, S. E. 1989. Cognitive 
apprenticeship: Teaching the crafts of reading, writing, and 
mathematics. Knowing, learning, and instruction: Essays in 
honor of Robert Glaser, 487. 

[3] Campe, S., Denner, J., & Werner, L. 2013. Intentional 
computing: Getting the results you want from game 
programming classes. Journal of Computing Teachers. 

[4] Denner, J., Werner, L., & Ortiz, E. 2012. Computer games 
created by middle school girls: Can they be used to measure 
understanding of computer science concepts?. Computers & 
Education, 58(1), 240-249.  

[5] Devlin, K. 2003. Why universities require computer science 
students to take math. Communications of the ACM, 46(9). 

[6] du Boulay, B. 1986. Some difficulties of learning to 
program. Journal of Educational Computing Research, 2(1). 

[7] Ericson, B., & McKlin, T. 2012. Effective and sustainable 
computing summer camps. In Proceedings of the 43rd ACM 
technical symposium on Computer Science  

[8] Goode, J., Chapman, G., Margolis, J., Landa, J., Ullah, 
T.,  Watkins, D., & Stephenson, C. 2013. Exploring 
Computer Science. http://www.exploringcs.org/curriculum  

[9] Grover, S. 2011. Robotics and engineering for middle and 
high school students to develop computational thinking, in 
Annual Meeting of the AERA, New Orleans, LA.  



[10] Grover, S., and Pea, R. 2013. Computational Thinking in K–
12: A Review of the State of the Field. Educational 
Researcher, 42(1), 38-43. 

[11] Grover, S., Pea, R., & Cooper, S. 2014. Promoting active 
learning & leveraging dashboards for curriculum assessment 
in an OpenEdX introductory CS course for middle school. In 
Proceedings of the first ACM conference on Learning@ 
scale conference (pp. 205-206). ACM. 

[12] Grover, S., Pea, R. & Cooper, S. 2014. Remedying 
Misperceptions of Computer Science among Middle School 
Students. In Proceedings of the 45th ACM Technical 
Symposium on Computer Science Education. ACM. 

[13] Grover, S., Cooper, S., & Pea, R. 2014. Assessing 
computational learning in K-12. In Proceedings of the 2014 
conference on Innovation & technology in computer science 
education (pp. 57-62). ACM. 

[14] Grover, S., Pea, R. and Cooper, S. 2014. Expansive Framing 
and Preparation for Future Learning in Middle-School 
Computer Science. In Proceedings of the 11th ICLS (2014). 

[15] Grover, S., Pea, R., Cooper, S. 2015. Designing for Deeper 
Learning in a Blended Computer Science Course for Middle 
School Students. Computer Sc. Education, 25(2), 199-237.  

[16] Guzdial, M. 2009. How we teach Introductory Computer 
Science is wrong. Blog at Communications of the ACM. 

[17] Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin, 
D. 2015. Floors and Flexibility: Designing a programming 
environment for 4th-6th grade classrooms. In Proceedings of 
the 46th ACM Technical Symposium on Computer Science 
Education (pp. 546-551). ACM.  

[18] Kramer, J. 2007. Is abstraction the key to computing?. 
Communications of the ACM, 50(4), 36-42. 

[19] Kurland, D. M., & Pea, R. D. 1985. Children's mental 
models of recursive LOGO programs. Journal of 
Educational Computing Research, 1(2), 235-243. 

[20] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. 2005. A 
study of the difficulties of novice programmers. ACM 
SIGCSE Bulletin, 37(3), 14-18.  

[21] Lewis, C. M., & Shah, N. 2012. Building upon and enriching 
grade four mathematics standards with programming 
curriculum. In Proceedings of the 43rd ACM technical 
symposium on Computer Science Education. ACM. 

[22] Mayer, R.E. 1989. The psychology of how novices learn 
computer programming. In E. Soloway & J.C. Spohrer 
(Eds.), Studying the novice programmer (pp. 129–159). 
Hillsdale, NJ: Lawrence Erlbaum 

[23] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M., 2010. 
Learning computer science concepts with Scratch. In 
Proceedings of the Sixth International Workshop on 
Computing Education Research (ICER '10). ACM. 

[24] Parsons, D., & Haden, P. 2006. Parson's programming 
puzzles: a fun and effective learning tool for first 
programming courses. In Proceedings of the 8th Australasian 
Conference on Computing Education-Volume 52 (pp. 157-
163). Australian Computer Society, Inc. 

[25] Pea, R. D., & Kurland, D. M. 1983. On the cognitive 
prerequisites of learning computer programming. (Tech. 
Report No. 16). New York: Bank Street College of 
Education, Center for Children and Technology. 

[26] Pea, R. D., & Kurland, D. M. 1984. On the cognitive effects 
of learning computer programming. New Ideas In 
Psychology, 2, 137–168. 

[27] Pellegrino, J. W., & Hilton, M. L. (Eds.). 2013. Education 
for life and work: Developing transferable knowledge and 
skills in the 21st century. National Academies Press. 

[28] Repenning, A., Webb, D., & Ioannidou, A. 2010. Scalable 
game design and the development of a checklist for getting 
computational thinking into public schools. In Proceedings 
of the 41st ACM Technical Symposium on Computer Science 
Education (SIGCSE ’10), 265–269. New York, NY: ACM. 

[29] Robins, A., Rountree, J., & Rountree, N. 2003. Learning and 
teaching programming: A review and discussion. Computer 
Science Education, 13(2), 137-172. 

[30] Schofield, E., Erlinger, M., & Dodds, Z. 2014. MyCS: CS for 
middle-years students and their teachers. In Proceedings of 
the 45th ACM technical symposium on Computer science 
education (pp. 337-342). ACM. 

[31] Scott, J. 2013. The royal society of Edinburgh/British 
computer society computer science exemplification project. 
Proceedings of ITiCSE'13, 313-315. 

[32] Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & 
Clark, D. 2013. Integrating computational thinking with K-
12 science education using agent-based computation: A 
theoretical framework. Education and Information 
Technologies, 1–30. 

[33] Spohrer, J. C. & Soloway, E. 1986. Novice mistakes: are the 
folk wisdoms correct? Communications of the ACM, 29(7. 

[34] Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A. 
2005. The new educational imperative: Improving high 
school computer science education. Computer Science 
Teachers Association (CSTA), New York, New York. 

[35] Tai, R., Qi Liu, C., Maltese, A.V., Fan, X. 2006. Planning 
Early for Careers in Science. Science. 312(5777) 1143-1144 

[36] Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). 
Toward a knowledge base for school learning. Review of 
educational research, 63(3), 249-294. 

[37] Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. 2012. 
The Fairy Performance Assessment: Measuring 
Computational Thinking in Middle School. In Proceedings of 
the 43rd ACM Technical Symposium on Computer Science 
Education (SIGCSE '12), 215-220. ACM, New York, NY. 

[38] Wilensky, U., Brady, C., & Horn, M. 2014. Fostering 
Computational Literacy in Science Classrooms. 
Communications of the ACM. 57(8): pp 17-21. 

[39] Williams, B., Brown, T., & Onsman, A. 2010. Exploratory 
factor analysis: A five-step guide for novices. Australasian 
Journal of Paramedicine, 8(3). Retrieved from 
http://ro.ecu.edu.au/jephc/vol8/iss3/1 

[40] Wing, J. 2006. Computational Thinking. Communications of 
the ACM. 49(3), 33-36. 

[41] Zur Bargury, I. 2012. A new Curriculum for Junior-High in 
Computer Science. ITiCSE'12, pp. 204-208. ACM. 

[42] Zur-Bargury, I., Pârv, B., & Lanzberg, D. 2013. A 
nationwide exam as a tool for improving a new curriculum. 
In Proceedings of ITiCSE’13 (pp. 267-272). ACM.

 


