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ABSTRACT

In a previous study, we found that real-time mutual gaze
perception (i.e., being able to see the gaze of your partner in real
time on a computer screen while solving a learning task) had a
positive effect on students’ collaboration and learning [8]. The
goals of this paper are to: 1) explore a variety of computational
techniques for analyzing the transcripts of students’ discussions;
2) examine whether any of those measures sheds new light on our
previous results; and 3) test whether those metrics have any
predictive power regarding learning outcomes. Using various
natural language processing algorithms, we found that linguistic
coordination (i.e., the extent to which students mimic each other in
terms of their grammatical structure) did not predict the quality of
student collaboration or learning gains. However, we found that
the coherence of students’ discourse was significantly different
across our experimental conditions; this measure was positively
correlated with their learning gains. Finally, using various
language metrics, we were able to roughly (i.e., using a median-
split) predict learning gains with a 94.4% accuracy using Support
Vector Machine. The accuracy dropped to 75% when we used our
model on a validation set. We conclude by discussing the benefits
of using computational techniques on educational datasets.

Keywords
Natural Language Processing; Eye-tracking; Learning Analytics;
Computer-Supported Collaborative Learning.

1. INTRODUCTION

Despite recent efforts in developing automated ways to analyze
students’ discourse, most educational researchers still rely on
traditional tools to analyze transcripts from students. Traditional
methods include time-consuming qualitative analyses and the
development of manual coding schemes. The field of Natural
Language Processing (NLP) has significantly grown and gained in
maturity over the past decades, and computational techniques can
now be advantageously applied to educational datasets. Recent
efforts in topic modeling, for instance, seem to be especially
promising in terms of gaining insights into students’ discourse and
cognitive processes [9]. Unfortunately, social scientists willing to
learn those tools are a rare breed, and multi-disciplinary work is
slow to appear between educational researchers and computer
scientists. In this paper, we describe our attempt at applying NLP
techniques to educational transcripts.
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2. THE CURRENT DATASET

In a previous work [8], we conducted a study on the effect of
mutual visual gaze perception on students’ collaborative problem-
solving processes. In this experiment, student dyads were asked to
remotely collaborate on a set of diagrams to discover how the
human brain processes visual information. Each student was
located in a different room, and could communicate with his/her
partner via an audio channel. The information on the screen was
similar for both participants (i.e., the brain diagrams shown in Fig.
1). The structure of the activity was as follows: in the first step,
students analyzed brain diagrams (12 minutes); in a second step,
they were asked to read a textbook chapter about human vision
and discuss their understanding of this topic (12 minutes). Finally,
before the analysis activity and after the reading task, students
were asked to complete a learning test (pre/post-questionnaires).

Half of our participants were assigned to an experimental group
(“visible-gaze”) where they could see the gaze of their partner
displayed in real time on a screen. To achieve this, we used two
Tobii X1 eye-trackers running at 30Hz which recorded students’
gaze. In a control group (“no-gaze”), the other half of our
participants did not have access to this visualization. This
intervention helped students in the first group achieve higher
learning gains (Fig. 2) and a higher quality of collaboration (as
measured by [4]).

We also recorded students’ gaze movements and their
collaborative discourse. Interestingly, by analyzing the eye-
tracking data we found that participants in the experimental
condition had more moments of joint attention (i.e., they were
more likely to be looking at the same diagram at the same time on
the screen), and this measure was significantly correlated with
positive learning gains. This result reinforced the assumption that
joint visual attention is a crucial mechanism for coordinating
social interactions [10].

o

Figure 1: Diagrams students had to analyze. Five contrasting
cases show the visual pathways of the human brain; students
had to identify the effect of each lesion on the visual field.
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Figure 2: Learning gains for the two experimental groups of
the study (p <.01).

In a subsequent analysis, we also suggested that our intervention
helped students because: 1) they were able to anticipate what their
partner was about to say, because they could already see the
location of their partner’s gaze on the screen; 2) they could use
gaze as a pointer to complement their discourse, and thus remove
the need to explicitly mention locations on the diagrams; and
finally, 3) they could monitor the visual activity of their partner at
all times, providing an aid to establishing a common ground.

We propose to use computational techniques to further illuminate
this dataset. More specifically, we are interested in exploring three
aspects of students’ dialogues:

1. Are there ways to characterize the effect of our
intervention on students’ discourse?

2. Is it possible to find markers of productive learning
trajectories?

3. Is it possible to find markers of constructive
collaborations?

Technically, we can answer the first question by designing
linguistic metrics and running statistical tests (i.e., ANOVA)
between our two experimental conditions. The second and third
questions can be answered by running correlations between our
measures of interest, learning gains and collaboration scores.

3. NATURAL LANGUAGE PROCESSING
AND MUTUAL GAZE PERCEPTION

In the next sections, we describe the measures used to provide a
preliminary answer to those questions. First, we looked at
unigrams, bigrams and trigrams counts to build categories of
interest using a bag of words model. Next, we looked at the
coordination of linguistic styles among students: are students more
likely to mimic the grammatical structure of their peers in a good
collaboration (as suggested by [2])? We then assessed the
coherence of students’ discourse, by comparing the similarity of
consecutive sub-sections of the transcripts; our goal was to
evaluate the extent to which students were building on each
other’s ideas during the task. Finally, we gathered all the previous
measures and ran a machine-learning algorithm (Support Vector
Machine) to roughly predict students’ learning gains.

3.1 N-GRAMS

To get a sense of our dataset, we first computed unigram, bigram
and trigram probabilities. This helped us understand which words

were frequently used in our two experimental groups, and allowed
us to build relevant categories for grouping our n-grams. For
instance, we observed that the word “look” was positively
correlated with learning gains (r(37) = 0.42, p = 0.008), which can
be associated with either the content to be learned (i.e., the brain
diagrams showed how visual information is processed by the
human brain) or a verbal indication to share visual information
(e.g., “look at my gaze!”). However, we did not conduct in-depth
analyses of the unigrams alone, because they were difficult to
interpret: unigrams are often ambiguous (see the example above),
and bigrams or trigrams are usually so rare that they don’t provide
strong evidence for any type of hypothesis. This is why we
decided to group them by categories instead of analyzing them in
isolation. As a first pass, we decided to create those categories
based on common sense: a researcher looked at the 200 most
common words and manually created groups of words that seemed
to relate to a common topic.

For instance, the category ‘anaphora’ contained the words “it”,
“some”, “that”, “which”, “each”, “few” and so on; the category
‘conceptual discussion’ contained “think”, “cause”, “because”,
“suppose”, “impact”, and so on. Table 1 shows the final 8
categories constructed from our dataset. We agree that those
groups were built in an arbitrary manner, and that some words
could belong to several categories. Nonetheless, our approach was
data-driven—in the sense that we used the most common words
from our dataset—and theory-driven, in that we designed potential
indicators for collaborative learning. For instance, the category
‘conceptual discussion’ is likely to be associated with higher
learning gains, and the category ‘anmaphoras’ is likely to be
associated with a higher quality of collaboration. Why? Because
this measure can serve as a proxy for measuring the quality of a
common ground between two participants: since anaphoras are
ambiguous by nature, they have to be correctly interpreted by the
interlocutor and thus indicate a stronger coordination between
students. Herbert Clark has developed a considerable body of
work investigating this topic [1].

Table 1: Categories built on common unigrams.

Category Unigrams

Jargon hemi, field, hemifield, brain, eye, lesion, optic,
vision, meyers, track, gaze, nerve, hemisphere,

loop, information, blind, radiation, meyer, LGN

Diagram blue, orange, case, circle, box, yellow, line, arrow,

white, black, circle, number, half

Location right, middle, left, top, bottom, diagram, opposite,
corner, side, down, underneath, back, inner, outer,
between, toward, lower, here, there, first, second,

third, fourth, fifth, one, two, three, four, five

think, cause, because, since, change, figure, would,
wouldn’t, impact, affect, explain, suppose, interpret

Conceptual
discussion

Uncertainty | maybe, possible, though, but, know, could, guess

anybody, anyone, both, each, each, other,
everybody, everyone, he, her, hers, herself, him,
himself, his, I, it, its, itself, me, mine, myself,
neither, nobody, others, ours, ourselves, several,
she, somebody, someone, their, theirs, them,
themselves, they, us, we, who, whoever, whom,
whomever, whose, you, your, yours, yourself,
yourselves

Anaphora
(person)
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all, another, anything, both, each, each, other,
everything, few, it, its, itself, most, much, neither,
one, none, nothing, one, one, another, other, others,
several, some, something, that, these, this, those,
what, which

Anaphora
(thing)

Participants in the experimental group used more anaphoras
compared to participants in the control group: F(1,41) =4.88, p =
0.03. Our results suggest that real-time mutual gaze perception
may be a way to support dyads in establishing common ground.
The findings indicate that participants in the real-time mutual gaze
perception condition were able to exploit this information to the
extent that they could employ ambiguous anaphora, realizing that
the pointing manifested by their partner’s gaze would
disambiguate the referent of their speech act. Additionally, there
appears to be a trend showing that more conceptual discussion
occurred in the “visible-gaze” group (Fig. 3, right side): F(1,41) =
5.52, p = 0.02. One limitation of this measure is that the number of
words representing this construct is relatively small (between 0
and three words used every minute). The other categories did not
yield any significant effect.

Even with these limitations, it is interesting to see that categories
built on n-grams frequencies can offer a new window into
students’ collaborative learning processes. In the next section, we
employ algorithms from the field of information retrieval to
further explore the differences between our experimental groups.

anaphoraTotal over time conceptual over time

1

Figure 3: Evolution of words related to conceptual discussion
and anaphoras over time. Blue line corresponds to the
“visible-gaze” group; purple line to the “no-gaze” group.

3.2 COORDINATION OF LINGUISTIC
STYLES (CONVERGENCE)

Computing n-grams counts and probabilities is an interesting way
to look at students’ discussions. However it doesn’t contribute to
our understanding of the linguistic patterns used in collaborative
learning discussions. To address this issue, we propose studying
the ways in which students build a discourse around the
instructional material. More specifically, we looked at a specific
phenomenon in social interactions called the chameleon effect. In
a previous study, Danescu [2] showed how in a social setting
people tend to mimic their interlocutor’s grammatical structure.
Here is an example:

Doc: At you were outside.
Carol: It doesn’t make difference where you are [...]

From Danescu: “Note that “Carol” used a quantifier, one that is
different than the one “Doc” employed. Also, notice that “Carol”
could just as well have replied in a way that doesn’t include a
quantifier, for example, “It doesn’t really matter where you are...”.

In two large datasets (movie dialogues and twitter), Danescu
importantly shows that this effect (called convergence) is

relatively robust and pervasive. That is, people tend to consistently
mimic the grammatical structure used by their interlocutor.
Previous research suggests that this convergence is associated with
enhanced communication in organizational contexts and in
psychotherapy (cited in [2]). Our goals are to 1) replicate
Danescu’s results on our dataset, and 2) test whether mutual visual
gaze perception supports convergence.

Concretely, Danescu used 9 categories from the LIWC corpus
(Linguistic Inquiry and Word Counts [7]) to compute converge
measures. Those categories are: articles, auxiliary verbs,
conjunctions, high-frequency adverbs, impersonal pronouns,
negations, personal pronouns, prepositions, and quantifiers. The
way convergence is computed is relatively trivial:

Pt =1la'=1) - P(b',, =1).

The first expression is the conditional probability of seeing word
type t expressed by person b in answer to person a, given that a
used this word type in the previous utterance. The second
expression is just the probability of seeing a particular word type
in the entire corpus. Subtracting the second expression from the
first one gives us a measure of convergence.

Figure 4 shows Danescu’s results for his dataset. Error bars are
flat and barely visible (shown in red) because his dataset is
relatively large; dark blue bars show the probability of using a
particular word type (e.g., articles, pronouns) and light blue bars
show the conditional probability of using a particular word type,
given that an interlocutor used the same word type in the previous
utterance. Figure 5 shows our replication of Danescu’s results. We
can see the same pattern emerging: light blue bars (conditional
probability that a certain category of words is mirrored by the
same word type in the interlocutor’s response) are always higher
than the probabilities of this type of word in the corpus. Due to our
smaller corpus, not all differences are statistically significant, but
most of them are (i.e., where the standard errors do not overlap).

0.80

Negation
Indef. pron.
Quantifier
Aux. verb
Adverb
Pers. pron.
Conjunction
Article
Preposition

Figure 4: From Danescu [2], this graph shows how people tend
to mimic the grammatical structure of their interlocutor. Light
blue bars show the conditional probability of using a
particular word type, given that an interlocutor used it in the
previous utterance. Dark blue bars show the probability of
using a particular word type in the entire corpus.
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Figure 5: A replication of Danescu's results on the current
dataset. Errors bars show standard errors. Non-overlapping
error bars show statistically significant differences.

Most importantly, there was special potential in using this measure
to discriminate between the two experimental groups (e.g.
“visible-gaze” vs “no-gaze”; productive vs poor collaborators;
good vs poor learners). Unfortunately, there wasn’t any significant
difference between those groups on our convergence measure (F <
1). This means that, at least in our corpus, coordination of
linguistic styles is not predictive of positive learning gains. It also
shows that mutual gaze perception doesn’t influence this effect:
students are not more likely to imitate each others’ grammatical
patterns if they can see the gaze of their partner in real time.

This convergence measure, however, only looks at superficial
features of collaborative dialogues (i.e., word types). It would be
much more interesting to look at the words themselves. If one
could show that productive students are more likely to mimic the
content mentioned by their partner, this would be a more
interesting result.

3.3 BUILDING ON YOUR PARTNER’S
IDEAS (COHERENCE)

In this section, we describe how we summarized our data in a very
high dimensional space, separated the transcripts in several
consecutive segments, and applied cosine similarity metrics to
measure students’ coherence. A cosine similarity score indicates
how similar two text documents (or subsections of a transcript)
are. Our approach was to segment students’ transcripts into
smaller texts and compute similarity measures between those
segments. By iteratively repeating this procedure, we can evaluate
the coherence of a discussion [6]. The idea behind coherence is
that interlocutors tend to adapt to the patterns in each other’s
utterances; this alignment, in turn, is believed to be indicative of
shared understanding (or common ground). Ward and Litman, for
instance, showed that coherence was predictive of learning in
tutoring dialogues [11]. There has been a significant amount of
additional work on this topic, in various domains. We won’t
summarize the literature on coherence, but the interested reader
can look at the work done around Coh-Metrix [3] for more
information.

Figure 6: cosine similarity between each participant of the
experiment. The diagonal is red because it represents each
students' perfect similarity with herself / himself.

The first step of the process was to apply tf-idf transformations
(term frequency—inverse document frequency) to our dataset. Tf-
idf is commonly used to summarize a text corpus. The value of
highly frequent words is decreased, and is offset by their
frequency in the corpus; this way, rare words gain a bigger weight
and common words (e.g., “the”, “it”) gain a smaller weight. This
technique is used in information retrieval to score documents’
relevance to a query. We then compared each student’s discourse
similarity with other participants by using a cosine similarity
measure over the entire transcripts. A cosine similarity measure
takes two vectors and computes the magnitude of the angle
between them to represent their similarity. We show every
pairwise comparison in Figure 6: dark blue lines show students
who are very dissimilar to everyone else; hot colors represent
similarity. As a sanity check, we can observe that students are
identical to themselves (red diagonal); Students in the same group
are next to each other on each axis, and we can see that students
belonging to the same group tend to resemble each other (2x2
squares along the diagonal). Finally, we can isolate students who
are very different from everyone else (e.g. P62 and P63) and try to
explain why they are very distinct from other participants: in our
case, P63 achieved the lowest learning gain after the activity. P62
was within one standard deviation of the mean.

Additionally, we tried to reorganize students on each axis based on
their learning scores (Fig.7, left side) and their quality of
collaboration (Fig.7, right side). The first approach did not cluster
students in any meaningful way; however, the second one showed
that students with a poor quality of collaboration (left and bottom
rows) tend to look very dissimilar to everyone else (shown in dark
blue). This result suggests that poor collaborative groups can
potentially be detected using cosine similarity measures.

Figure 7: cosine similarity matrix, reorganized with students'
learning scores (left) and quality of collaboration (right).
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Figure 8: Students’ coherence when discussing the task.
Students in the “visible-gaze” group were significantly more
coherent (p < .05); higher coherence was also significantly
correlated with higher learning gains (p <.05).

We then computed a first measure of students’ coherence: while
our approach was simplistic (more complicated measures of
coherence do exist [3]), it provided an approach relatively easy to
understand and to apply. We built on our previous results using tf-
idf and cosine similarity to assess whether students were re-using
ideas mentioned earlier in their discussion. More specifically, we
considered n exchanges and compared them to the m previous
exchanges. For instance, where n=5 and m=5, we computed the
similarity between utterances 15 to 20 (current discussion) with
utterances 10 to 15 (ideas exchanged at the beginning of the
experiment).

We then iteratively moved this 5-exchanges window through the
transcript and averaged the similarity across all exchanges to
compute our measure of coherence. Using this measure, we found
that students in the “visible-gaze” condition were more coherent
than students in the “no-gaze” condition (Fig. 8): F(1,20) = 7.45, p
=0.01, Cohen's d = 0.34 (for the visible-gaze group, mean=0.23,
SD=0.07; for the no-gaze group, mean=0.15, SD=0.06). This
measure was positively correlated with students’ learning gain:
r(19) = 0.540, p = 0.011 (Fig. 9). Those results suggest that
students who could see the gaze of their partner in real time on the
screen were more likely to have a coherent discourse;
additionally, a coherent discourse was more likely to lead to
higher learning gains.
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Figure 9: Correlation between dyads’ dialogue coherence and
learning gain: r(19) = 0.540, p = 0.011.

On a side note, we tried various values for n and m. Some of those
results were not significant, but we always found that students in
the “visible-gaze” group were more coherent than students in the
“no-gaze” group. At the end, we observed that comparing 5
exchanges with the 5 previous utterances produced the results that
were the clearest and easier to interpret.

Here we provide an example of a highly coherent exchange
(cosine similarity of 0.5). We highlighted similar words between
the two sets of utterances in bold:

--- Exchange 1 ---
A: 1 think that we did say the fifth one down.
B: OK. So then it’s lesion five. OK.

A: And you said for your answer, you said the third one down
whereas | said the sixth one down. The rest are kind of similar
besides for that kind of like semi-circle in the middle being kind
of white.

B: Right, right. Hold on. Number six, < mumbling to self >, the
number for that side is gonna be, um, this is tricky business.

A: Yeah it is. < Laughs >.

--- Exchange 2 (same discussion, continued) ---

B: Kind of? < Laughs >.

A: Yeah. So what do you want to do for lesion five?

B: For lesion five? Um, number... the fifth one down, is that
what we said originally? I think that that's still the correct way to
g0

A: OK.

B: That's what we said initially, right?

--- End of Exchange 2 ---

We can observe at least three common repetitions across those two
segments. First, the reference to lesion 5 introduced by A in the
first exchange and repeated by B in the second exchange.
Secondly, both participants express uncertainty by saying “kind
of” in the two segments. Finally, there is an abundance of
acknowledgement in the form of keywords like “OK” and “right”.
All those elements point to a relatively solid common ground
between the two participants, which is captured by our measure of
coherence. Our results, illustrated by the exchange above, is in line
with the results of [5], who showed that convergence is not only
associated with conceptual understanding but also with affective
components such as frustration, engagement and confusion.

3.4 ADDITIONAL RESULTS

In a subsequent step, we sought baselines to use for comparing
students’ utterance corpora. For instance, we can imagine that
comparing the transcripts of students with a baseline of an expert
discussion on this topic would be predictive of their learning
gains. To this end, we used two corpora as references: first, we
used the best student (in terms of her learning score) of our dataset
(P55). She was in the visible-gaze condition and got an impressive
80% gain on the post-test, where the average was around 50%.
Second, we inserted the text that students had to read in the 2™
step of the experiment into our dataset. This text is highly
technical and is likely to pick up students’ use of the particular
terminology associated with this domain.

We found that students in the “visible-gaze” group looked more
like P55: F(1,39), p = 0.04, Cohen's d = 0.35 (visible-gaze
mean=0.97, SD=0.27; no-gaze mean=0.80, SD=0.20).
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Interestingly, this measure was positively correlated with students’
quality of collaboration: r(38) = 0.545, p < 0.001. There wasn’t
any difference between the two groups when looking at their
similarity with the textbook chapter: F(1,39), p = 0.17, Cohen's d
= 0.10 (visible-gaze mean=0.11, SD=0.04; no-gaze mean=0.09,
SD=0.04). However, this measure was significantly correlated
with students’ conceptual understanding of the topic taught: r(38)
=0.335, p=0.035.

In summary, it appears that taking different baselines is helpful for
finding relevant predictors of good learning groups. Taking a
student’s cosine similarity with a standard reference of domain
knowledge (i.e., a textbook chapter) seems to be associated with
higher learning on a test. Taking a student’s cosine similarity with
the “best” student of the dataset seems to be associated with
productive patterns of collaboration. This makes sense, since
students’ utterances reflect the way novices discuss and learn
about a new topic; a scientific text, on the other hand, is produced
by experts who have mastered the concepts and terminology of a
domain. In sum, those two features could be advantageously used
to further explore students’ discussion, as well as to feed machine
learning algorithms trying to predict students’ learning.

3.5 PUTTING OUR MEASURES
TOGETHER: PREDICTING STUDENTS’
QUALITY OF COLLABORATION AND
LEARNING GAINS USING LINGUISTIC
FEATURES

Our final contribution is to test whether the measures described
above have any predictive value. More specifically, can we
roughly classify students in terms of their learning gains using
machine learning algorithms? To answer this question, we
separated our participants into two groups based on the median
value of students’ learning gains. We then tried to predict in which
group each student belonged, i.e., below or above the median split.

We then used our hand-labeled categories from section one (n-
grams), the cosine similarity scores, the convergence measures
and the coherence metrics as features. The complete dataframe
contained 60 features and 40 rows. We used the built-in version of
Support Vector Machine (SVM) provided by Matlab with a
forward search feature selection and tried various kernels (linear,
quadratic, polynomial, Gaussian, multilayer perceptron). For the
learning scores, we found that SVM with a multilayer perceptron
kernel and 8 features could correctly classify 94.44% of our
participants. We also used a validation set (4 participants, which
constitutes 10% of our sample). Those 4 participants were
randomly selected from our dataset and we predicted whether they
were above or below the median split on the learning gains after
we found our best model. On the validation set, our model
correctly classified 75% of the participants (3/4).

Those results are impressive, but they need to be hedged with
healthy skepticism. First, many features were used to make this
prediction. It is probable that the algorithm is cherry-picking the
relevant features to improve its accuracy (which is also over-
fitting the data). Secondly, the training set is rather small. There
are only ~40 students to classify, which is another serious
limitation. Finally, even though we are using a validation set, it
should be kept in mind that this set is small (only four datapoints).
Finally, those results should be contrasted with other baselines,
such as decision trees or naive bayes.

Table 2: Rough classification of students (using a median-split)
in terms of their learning gains.

Accuracy | Accuracy
on the on the Features
test set validation
set

Uncertainty,
Negations,
Aux. Verbs,

94.44%, 75% Length Sentence,

SVM .

(34/36) (3/4) Prepositions,
Number of words used,
Number of Anaphoras,
Impersonal Pronouns

In sum, these analyses indicate noteworthy promise in using
linguistic features to predict students’ learning and ability to
collaborate with their peers, but those results need to be replicated
on larger datasets to be truly convincing.

Interestingly, SVM selected some of the correlations we found
above between students’ learning gains and particular features of
our transcripts: number of anaphoras used and keyword showing
students’ uncertainty. However, other measures such as coherence,
cosine similarity with a textbook chapter were not included in our
final model. Instead, it favored low-level measures, such as the
number of words used by students, the length of their sentence and
particular grammatical forms (negations, auxiliary verbs,
prepositions). This shows that some variables may be good
predictors in isolation, but lose their predictive power when
associated with other measures.

4. DISCUSSION

The goal of this project was to explore various NLP techniques to
make sense of educational datasets; we favored a ‘“breadth”
approach where we tried promising techniques rather than
exploring one specific measure in depth. In future work, we will
go back to our most promising results (e.g., coherence and cosine
similarity) and explore them in more detail, as well as to examine
not only the cosine similarity to the best student of the other
students’ transcripts but to more aggregate exemplars of ‘better or
worse students’, such as the upper and lower quartile of the
students in terms of learning score.

To recap our results, we have found that: 1) n-grams probabilities
can help characterize groups of students in terms of building a
common ground with their partners (anaphoras); 2) cosine
similarity measures are most useful when used with a “reference”
corpus (e.g., textbook chapter; transcript of a very good student as
measured by learning gains); 3) coordination of linguistic style has
little predictive power in terms of explaining dyads’ collaborative
learning processes; 4) coherence measures, on the other hand, are
positively associated with students’ learning 5) using SVM and
the features mentioned above, we can roughly predict students’
learning outcomes with an accuracy higher than 90% (which
dropped to 75% for our validation set).

We argue that our approach is especially useful when analyzing
the results of a controlled experiment. We were able to
characterize the effects of mutual gaze perception on students’
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discourse, and we found interesting predictors for learning gains
and students’ collaboration quality. However, we also argue that
those techniques could be used in other domains. For instance,
comparing the similarity between a reference text and students’
utterances has already been used for assessing essays. Coherence
can be used in similar contexts. More interestingly, those metrics
could be advantageously used on multi-modal datasets. Eye-
tracking data, for instance, could be converted in a series of word
tokens representing the location of students’ gaze over time.
Similarity measures could then be used as described above to
characterize visual exploration of a problem space. We believe
that NLP measures have been too rarely used on non-linguistic
datasets (e.g., gestures, as measured by a kinect sensor; gaze, as
measured by eye-trackers; arousal, as measured by galvanic skin
response devices) and could provide new insights into the ways
that students construct their understanding of a particular concept,
and to establish a productive collaboration with one another.

Limitations of this work have been mentioned in previous sections
(e.g., small dataset, limited amount of error analysis). Replicating
those results on larger datasets would make a more convincing
argument for using NLP measures in education.

5. CONCLUSION

This paper showed NLP approaches offer substantial promise for
understanding educational datasets and automating currently
unwieldy and time-consuming hand analyses. The measures
described above could easily be applied to other settings, such as
forums or online discussions. Future work includes refining those
measures and deepening our sense of their predictive value;
replicating those results on other datasets; and exploring additional
topics in NLP (e.g., topic modeling with Latent Semantic Analsyis
or Latent Dirichlet Allocation).
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