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ABSTRACT 
In a previous study, we found that real-time mutual gaze 
perception (i.e., being able to see the gaze of your partner in real 
time on a computer screen while solving a learning task) had a 
positive effect on students’ collaboration and learning [8]. The 
goals of this paper are to: 1) explore a variety of computational 
techniques for analyzing the transcripts of students’ discussions; 
2) examine whether any of those measures sheds new light on our 
previous results; and 3) test whether those metrics have any 
predictive power regarding learning outcomes. Using various 
natural language processing algorithms, we found that linguistic 
coordination (i.e., the extent to which students mimic each other in 
terms of their grammatical structure) did not predict the quality of 
student collaboration or learning gains. However, we found that 
the coherence of students’ discourse was significantly different 
across our experimental conditions; this measure was positively 
correlated with their learning gains. Finally, using various 
language metrics, we were able to roughly (i.e., using a median-
split) predict learning gains with a 94.4% accuracy using Support 
Vector Machine. The accuracy dropped to 75% when we used our 
model on a validation set. We conclude by discussing the benefits 
of using computational techniques on educational datasets. 

Keywords 
Natural Language Processing; Eye-tracking; Learning Analytics; 
Computer-Supported Collaborative Learning. 

1. INTRODUCTION 
Despite recent efforts in developing automated ways to analyze 
students’ discourse, most educational researchers still rely on 
traditional tools to analyze transcripts from students. Traditional 
methods include time-consuming qualitative analyses and the 
development of manual coding schemes. The field of Natural 
Language Processing (NLP) has significantly grown and gained in 
maturity over the past decades, and computational techniques can 
now be advantageously applied to educational datasets. Recent 
efforts in topic modeling, for instance, seem to be especially 
promising in terms of gaining insights into students’ discourse and 
cognitive processes [9]. Unfortunately, social scientists willing to 
learn those tools are a rare breed, and multi-disciplinary work is 
slow to appear between educational researchers and computer 
scientists. In this paper, we describe our attempt at applying NLP 
techniques to educational transcripts. 

2. THE CURRENT DATASET 
In a previous work [8], we conducted a study on the effect of 
mutual visual gaze perception on students’ collaborative problem-
solving processes. In this experiment, student dyads were asked to 
remotely collaborate on a set of diagrams to discover how the 
human brain processes visual information. Each student was 
located in a different room, and could communicate with his/her 
partner via an audio channel. The information on the screen was 
similar for both participants (i.e., the brain diagrams shown in Fig. 
1). The structure of the activity was as follows: in the first step, 
students analyzed brain diagrams (12 minutes); in a second step, 
they were asked to read a textbook chapter about human vision 
and discuss their understanding of this topic (12 minutes). Finally, 
before the analysis activity and after the reading task, students 
were asked to complete a learning test (pre/post-questionnaires).  

Half of our participants were assigned to an experimental group 
(“visible-gaze”) where they could see the gaze of their partner 
displayed in real time on a screen. To achieve this, we used two 
Tobii X1 eye-trackers running at 30Hz which recorded students’ 
gaze. In a control group (“no-gaze”), the other half of our 
participants did not have access to this visualization. This 
intervention helped students in the first group achieve higher 
learning gains (Fig. 2) and a higher quality of collaboration (as 
measured by [4]).  

We also recorded students’ gaze movements and their 
collaborative discourse. Interestingly, by analyzing the eye-
tracking data we found that participants in the experimental 
condition had more moments of joint attention (i.e., they were 
more likely to be looking at the same diagram at the same time on 
the screen), and this measure was significantly correlated with 
positive learning gains. This result reinforced the assumption that 
joint visual attention is a crucial mechanism for coordinating 
social interactions [10].  

 
Figure 1: Diagrams students had to analyze. Five contrasting 
cases show the visual pathways of the human brain; students 
had to identify the effect of each lesion on the visual field. 
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Figure 2: Learning gains for the two experimental groups of 

the study (p < .01). 
In a subsequent analysis, we also suggested that our intervention 
helped students because: 1) they were able to anticipate what their 
partner was about to say, because they could already see the 
location of their partner’s gaze on the screen; 2) they could use 
gaze as a pointer to complement their discourse, and thus remove 
the need to explicitly mention locations on the diagrams; and 
finally, 3) they could monitor the visual activity of their partner at 
all times, providing an aid to establishing a common ground.  

We propose to use computational techniques to further illuminate 
this dataset. More specifically, we are interested in exploring three 
aspects of students’ dialogues: 

1. Are there ways to characterize the effect of our 
intervention on students’ discourse? 

2. Is it possible to find markers of productive learning 
trajectories?  

3. Is it possible to find markers of constructive 
collaborations? 

Technically, we can answer the first question by designing 
linguistic metrics and running statistical tests (i.e., ANOVA) 
between our two experimental conditions. The second and third 
questions can be answered by running correlations between our 
measures of interest, learning gains and collaboration scores. 

3. NATURAL LANGUAGE PROCESSING 
AND MUTUAL GAZE PERCEPTION 
In the next sections, we describe the measures used to provide a 
preliminary answer to those questions. First, we looked at 
unigrams, bigrams and trigrams counts to build categories of 
interest using a bag of words model. Next, we looked at the 
coordination of linguistic styles among students: are students more 
likely to mimic the grammatical structure of their peers in a good 
collaboration (as suggested by [2])? We then assessed the 
coherence of students’ discourse, by comparing the similarity of 
consecutive sub-sections of the transcripts; our goal was to 
evaluate the extent to which students were building on each 
other’s ideas during the task. Finally, we gathered all the previous 
measures and ran a machine-learning algorithm (Support Vector 
Machine) to roughly predict students’ learning gains.  

3.1 N-GRAMS  
To get a sense of our dataset, we first computed unigram, bigram 
and trigram probabilities. This helped us understand which words 

were frequently used in our two experimental groups, and allowed 
us to build relevant categories for grouping our n-grams. For 
instance, we observed that the word “look” was positively 
correlated with learning gains (r(37) = 0.42, p = 0.008), which can 
be associated with either the content to be learned (i.e., the brain 
diagrams showed how visual information is processed by the 
human brain) or a verbal indication to share visual information 
(e.g., “look at my gaze!”). However, we did not conduct in-depth 
analyses of the unigrams alone, because they were difficult to 
interpret: unigrams are often ambiguous (see the example above), 
and bigrams or trigrams are usually so rare that they don’t provide 
strong evidence for any type of hypothesis. This is why we 
decided to group them by categories instead of analyzing them in 
isolation. As a first pass, we decided to create those categories 
based on common sense: a researcher looked at the 200 most 
common words and manually created groups of words that seemed 
to relate to a common topic.  

For instance, the category ‘anaphora’ contained the words “it”, 
“some”, “that”, “which”, “each”, “few” and so on; the category 
‘conceptual discussion’ contained “think”, “cause”, “because”, 
“suppose”, “impact”, and so on. Table 1 shows the final 8 
categories constructed from our dataset. We agree that those 
groups were built in an arbitrary manner, and that some words 
could belong to several categories. Nonetheless, our approach was 
data-driven—in the sense that we used the most common words 
from our dataset—and theory-driven, in that we designed potential 
indicators for collaborative learning. For instance, the category 
‘conceptual discussion’ is likely to be associated with higher 
learning gains, and the category ‘anaphoras’ is likely to be 
associated with a higher quality of collaboration. Why? Because 
this measure can serve as a proxy for measuring the quality of a 
common ground between two participants: since anaphoras are 
ambiguous by nature, they have to be correctly interpreted by the 
interlocutor and thus indicate a stronger coordination between 
students. Herbert Clark has developed a considerable body of 
work investigating this topic [1].  
Table 1: Categories built on common unigrams. 

Category Unigrams 

Jargon hemi, field, hemifield, brain, eye, lesion, optic, 
vision, meyers, track, gaze, nerve, hemisphere, 
loop, information, blind, radiation, meyer, LGN 

Diagram blue, orange, case, circle,  box, yellow, line, arrow, 
white, black, circle, number, half 

Location right, middle, left, top, bottom, diagram, opposite, 
corner, side, down, underneath, back, inner, outer, 
between, toward, lower, here, there, first, second, 
third, fourth, fifth, one, two, three, four, five 

Conceptual 
discussion 

think, cause, because, since, change, figure, would, 
wouldn’t, impact, affect, explain, suppose, interpret 

Uncertainty  maybe, possible, though, but, know, could, guess 

Anaphora 
(person) 

anybody, anyone, both, each, each, other, 
everybody, everyone, he, her, hers, herself, him, 
himself, his, I, it, its, itself, me, mine, myself, 
neither, nobody, others, ours, ourselves, several, 
she, somebody, someone, their, theirs, them, 
themselves, they, us, we, who, whoever, whom, 
whomever, whose, you, your, yours, yourself, 
yourselves 
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Anaphora 
(thing) 

all, another, anything, both, each, each, other, 
everything, few, it, its, itself, most, much, neither, 
one, none, nothing, one, one, another, other, others, 
several, some, something, that, these, this, those, 
what, which 

 

Participants in the experimental group used more anaphoras 
compared to participants in the control group: F(1,41) = 4.88, p = 
0.03. Our results suggest that real-time mutual gaze perception 
may be a way to support dyads in establishing common ground. 
The findings indicate that participants in the real-time mutual gaze 
perception condition were able to exploit this information to the 
extent that they could employ ambiguous anaphora, realizing that 
the pointing manifested by their partner’s gaze would 
disambiguate the referent of their speech act. Additionally, there 
appears to be a trend showing that more conceptual discussion 
occurred in the “visible-gaze” group (Fig. 3, right side): F(1,41) = 
5.52, p = 0.02. One limitation of this measure is that the number of 
words representing this construct is relatively small (between 0 
and three words used every minute). The other categories did not 
yield any significant effect. 

Even with these limitations, it is interesting to see that categories 
built on n-grams frequencies can offer a new window into 
students’ collaborative learning processes.  In the next section, we 
employ algorithms from the field of information retrieval to 
further explore the differences between our experimental groups. 

  
Figure 3: Evolution of words related to conceptual discussion  
and anaphoras over time. Blue line corresponds to the 
“visible-gaze” group; purple line to the “no-gaze” group. 

3.2 COORDINATION OF LINGUISTIC 
STYLES (CONVERGENCE) 
Computing n-grams counts and probabilities is an interesting way 
to look at students’ discussions. However it doesn’t contribute to 
our understanding of the linguistic patterns used in collaborative 
learning discussions. To address this issue, we propose studying 
the ways in which students build a discourse around the 
instructional material. More specifically, we looked at a specific 
phenomenon in social interactions called the chameleon effect. In 
a previous study, Danescu [2] showed how in a social setting 
people tend to mimic their interlocutor’s grammatical structure. 
Here is an example: 

Doc: At least you were outside. 

Carol: It doesn’t make much difference where you are [...] 

From Danescu: “Note that “Carol” used a quantifier, one that is 
different than the one “Doc” employed. Also, notice that “Carol” 
could just as well have replied in a way that doesn’t include a 
quantifier, for example, “It doesn’t really matter where you are...”.   

In two large datasets (movie dialogues and twitter), Danescu 
importantly shows that this effect (called convergence) is 

relatively robust and pervasive. That is, people tend to consistently 
mimic the grammatical structure used by their interlocutor. 
Previous research suggests that this convergence is associated with 
enhanced communication in organizational contexts and in 
psychotherapy (cited in [2]). Our goals are to 1) replicate 
Danescu’s results on our dataset, and 2) test whether mutual visual 
gaze perception supports convergence. 

Concretely, Danescu used 9 categories from the LIWC corpus 
(Linguistic Inquiry and Word Counts [7]) to compute converge 
measures. Those categories are: articles, auxiliary verbs, 
conjunctions, high-frequency adverbs, impersonal pronouns, 
negations, personal pronouns, prepositions, and quantifiers. The 
way convergence is computed is relatively trivial: 

IMDB information. We then extracted 220,579
conversational exchanges between pairs of charac-
ters engaging in at least 5 exchanges, and auto-
matically matched these characters to IMDB to re-
trieve gender (as indicated by the designations “ac-
tor” or “actress”) and/or billing-position information
when possible (⇡9000 characters, ⇡3000 gender-
identified and ⇡3000 billing-positioned). The latter
feature serves as a proxy for narrative importance:
the higher up in the credits, the more important the
character tends to be in the film.

To the best of our knowledge, this is the largest
dataset of (metadata-rich) imaginary conversations
to date.

4 Measuring linguistic style

For consistency with prior work, we employed the
nine LIWC-derived categories (Pennebaker et al.,
2007) deemed by Ireland et al. (2011) to be pro-
cessed by humans in a generally non-conscious fash-
ion. The nine categories are: articles, auxiliary
verbs, conjunctions, high-frequency adverbs, im-
personal pronouns, negations, personal pronouns,
prepositions, and quantifiers (451 lexemes total).

It is important to note that language coordination
is multimodal: it does not necessarily occur simulta-
neously for all features (Ferrara, 1991), and speakers
may converge on some features but diverge on others
(Thakerar et al., 1982); for example, females have
been found to converge on pause frequency with
male conversational partners but diverge on laugh-
ter (Bilous and Krauss, 1988).

5 Measuring convergence

Niederhoffer and Pennebaker (2002) use the correla-
tion coefficient to measure accommodation with re-
spect to linguistic style features. While correlation
at first seems reasonable, it has some problematic as-
pects in our setting (we discuss these problems later)
that motivate us to employ an alternative measure.

We instead use a convergence measure introduced
in Danescu-Niculescu-Mizil et al. (2011) that quan-
tifies how much a given feature family t serves as an
immediate trigger or stimulus, meaning that one per-
son’s utterance exhibiting such a feature triggers the
appearance of that feature in the respondent’s imme-
diate reply.

For example, we might be studying whether one
person A’s inclusion of articles in an utterance trig-
gers the usage of articles in respondent B’s reply.
Note that this differs from asking whether B uses ar-
ticles more often when talking to A than when talk-
ing to other people (it is not so surprising that peo-
ple speak differently to different audiences). This
also differs from asking whether B eventually starts
matching A’s behavior in later utterances within the
same conversation. We specifically want to know
whether each utterance by A triggers an immediate
change in B’s behavior, as such instantaneous adap-
tation is what we consider the most striking aspect
of convergence, although immediate and long-term
coordination are clearly related.

We now describe the statistic we employ to mea-
sure the extent to which person B accommodates to
A. Consider an arbitrary conversational exchange
started by A, and let a denote A’s initiating utterance
and b,!a denote B’s reply to a.9 Note that we use
lowercase to emphasize when we are talking about
individual utterances rather than all the utterances of
the particular person, and that thus, the arrow in b,!a

indicates that we mean the reply to the specific sin-
gle utterance a. Let a

t be the indicator variable for a

exhibiting t, and similarly for b

t
,!a. Then, we define

the convergence ConvA,B(t) of B to A as:
P (bt

,!a = 1|at = 1)� P (bt
,!a = 1). (1)

Note that this quantity can be negative (indicating
divergence). The overall degree Conv(t) to which t

serves as a trigger is then defined as the expectation
of ConvA,B(t) over all initiator-respondent pairs:

Conv(t) def= Epairs(A,B)(ConvA,B(t)). (2)

Comparison with correlation: the importance

of asymmetry

10 Why do we employ ConvA,B ,
Equation (1), instead of the well-known correlation
coefficient? One reason is that correlation fails to

9We use “initiating” and “reply” loosely: in our terminology,
the conversation hA: “Hi.” B: “Eaten?” A: “Nope.”i has two
exchanges, one initiated by A’s “Hi”, the other by B’s “Eaten?”.

10Other asymmetric measures based on conditional prob-
ability of occurrence have been proposed for adaptation
within monologues (Church, 2000) and between conversations
(Stenchikova and Stent, 2007). Since our focus is different, we
control for different factors.

 
The first expression is the conditional probability of seeing word 
type t expressed by person b in answer to person a, given that a 
used this word type in the previous utterance. The second 
expression is just the probability of seeing a particular word type 
in the entire corpus. Subtracting the second expression from the 
first one gives us a measure of convergence.  
Figure 4 shows Danescu’s results for his dataset. Error bars are 
flat and barely visible (shown in red) because his dataset is 
relatively large; dark blue bars show the probability of using a 
particular word type (e.g., articles, pronouns) and light blue bars 
show the conditional probability of using a particular word type, 
given that an interlocutor used the same word type in the previous 
utterance. Figure 5 shows our replication of Danescu’s results. We 
can see the same pattern emerging: light blue bars (conditional 
probability that a certain category of words is mirrored by the 
same word type in the interlocutor’s response) are always higher 
than the probabilities of this type of word in the corpus. Due to our 
smaller corpus, not all differences are statistically significant, but 
most of them are (i.e., where the standard errors do not overlap).  

capture an important asymmetry. The case where
a

t = 1 but b

t
,!a = 0 represents a true failure to ac-

commodate; but the case where a

t = 0 but b

t
,!a = 1

should not, at least not to the same degree. For ex-
ample, a may be very short (e.g., “What?”) and thus
not contain an article, but we don’t assume that this
completely disallows B from using articles in their
reply. In other words, we are interested in whether
the presence of t acts as a trigger, not in whether
b,!a exhibits t if and only if a does, the latter being
what correlation detects.11

It bears mentioning that since a

t and b

t
,!a are

binary, a simple calculation shows that the covari-
ance12

cov(at
, b

t
,!a) = ConvA,B(t) · P (at = 1).

But, the two terms on the right hand side are
not independent: raising P (at = 1) could cause
ConvA,B(t) to decrease by affecting the first term
in its definition, P (bt

,!a = 1|at = 1) (see eq. 1).

6 Experimental results

6.1 Convergence exists in fictional dialogs

For each ordered pair of characters (A, B) and for
each feature family t, we estimate equation (1) in a
straightforward manner: the fraction of B’s replies
to t-manifesting A utterances that themselves ex-
hibit t, minus the fraction of all replies of B to A

that exhibit t.13 Fig. 1 compares the average values
of these two fractions (as a way of putting conver-
gence values into context), showing positive differ-
ences for all of the considered families of features
(statistically significant, paired t-test p < 0.001); this
demonstrates that movie characters do indeed con-
verge to each other’s linguistic style on all consid-
ered trigger families.14

11One could also speculate that it is easier for B to (uncon-
sciously) pick up on the presence of t than on its absence.

12The covariance of two random variables is their correlation
times the product of their standard deviations.

13For each t, we discarded pairs of characters where some
relevant count is < 10, e.g., where B had fewer than 10 replies
manifesting the trigger.

14We obtained the same qualitative results when measuring
convergence via the correlation coefficient, doing so for the sake
of comparability with prior work (Niederhoffer and Pennebaker,
2002; Taylor and Thomas, 2008).

Figure 1: Implicit depiction of convergence for each trig-
ger family t, illustrated as the difference between the
means of P (bt

,!a = 1|at = 1) (right/light-blue bars) and
P (bt

,!a = 1) (left/dark-blue bars). (This implicit repre-
sentation allows one to see the magnitude of the two com-
ponents making up our definition of convergence.) The
trigger families are ordered by decreasing convergence.
All differences are statistically significant (paired t-test).
In all figures in this paper, error bars represent standard
error, estimated via bootstrap resampling (Koehn, 2004).
(Here, the error bars, in red, are very tight.)

Movies vs. Twitter One can ask how our results
on movie dialogs correspond to those for real-life
conversations. To study this, we utilize the results
of Danescu-Niculescu-Mizil et al. (2011) on a large-
scale collection of Twitter exchanges as data on
real conversational exchanges. Figure 2 depicts the
comparison, revealing two interesting effects. First,
Twitter users coordinate more than movie characters
on all the trigger families we considered, which does
show that the convergence effect is stronger in actual
interchanges. On the other hand, from the perspec-
tive of potentially using imagined dialogs as prox-
ies for real ones, it is intriguing to see that there is
generally a correspondence between how much con-
vergence occurs in real dialogs for a given feature
family and how much convergence occurs for that
feature in imagined dialogs, although conjunctions
and articles show a bit less convergence in fictional

 
Figure 4: From Danescu [2], this graph shows how people tend 
to mimic the grammatical structure of their interlocutor. Light 
blue bars show the conditional probability of using a 
particular word type, given that an interlocutor used it in the 
previous utterance. Dark blue bars show the probability of 
using a particular word type in the entire corpus. 
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Figure 5: A replication of Danescu's results on the current 
dataset. Errors bars show standard errors. Non-overlapping 
error bars show statistically significant differences. 
Most importantly, there was special potential in using this measure 
to discriminate between the two experimental groups (e.g. 
“visible-gaze” vs “no-gaze”; productive vs poor collaborators; 
good vs poor learners). Unfortunately, there wasn’t any significant 
difference between those groups on our convergence measure (F < 
1). This means that, at least in our corpus, coordination of 
linguistic styles is not predictive of positive learning gains. It also 
shows that mutual gaze perception doesn’t influence this effect: 
students are not more likely to imitate each others’ grammatical 
patterns if they can see the gaze of their partner in real time.  
This convergence measure, however, only looks at superficial 
features of collaborative dialogues (i.e., word types). It would be 
much more interesting to look at the words themselves. If one 
could show that productive students are more likely to mimic the 
content mentioned by their partner, this would be a more 
interesting result.  

3.3 BUILDING ON YOUR PARTNER’S 
IDEAS (COHERENCE) 
In this section, we describe how we summarized our data in a very 
high dimensional space, separated the transcripts in several 
consecutive segments, and applied cosine similarity metrics to 
measure students’ coherence. A cosine similarity score indicates 
how similar two text documents (or subsections of a transcript) 
are. Our approach was to segment students’ transcripts into 
smaller texts and compute similarity measures between those 
segments. By iteratively repeating this procedure, we can evaluate 
the coherence of a discussion [6]. The idea behind coherence is 
that interlocutors tend to adapt to the patterns in each other’s 
utterances; this alignment, in turn, is believed to be indicative of 
shared understanding (or common ground). Ward and Litman, for 
instance, showed that coherence was predictive of learning in 
tutoring dialogues [11]. There has been a significant amount of 
additional work on this topic, in various domains. We won’t 
summarize the literature on coherence, but the interested reader 
can look at the work done around Coh-Metrix [3] for more 
information.  

 
Figure 6: cosine similarity between each participant of the 
experiment. The diagonal is red because it represents each 
students' perfect similarity with herself / himself. 
The first step of the process was to apply tf-idf transformations 
(term frequency–inverse document frequency) to our dataset. Tf-
idf is commonly used to summarize a text corpus. The value of 
highly frequent words is decreased, and is offset by their 
frequency in the corpus; this way, rare words gain a bigger weight 
and common words (e.g., “the”, “it”) gain a smaller weight. This 
technique is used in information retrieval to score documents’ 
relevance to a query. We then compared each student’s discourse 
similarity with other participants by using a cosine similarity 
measure over the entire transcripts. A cosine similarity measure 
takes two vectors and computes the magnitude of the angle 
between them to represent their similarity. We show every 
pairwise comparison in Figure 6: dark blue lines show students 
who are very dissimilar to everyone else; hot colors represent 
similarity. As a sanity check, we can observe that students are 
identical to themselves (red diagonal); Students in the same group 
are next to each other on each axis, and we can see that students 
belonging to the same group tend to resemble each other (2x2 
squares along the diagonal). Finally, we can isolate students who 
are very different from everyone else (e.g. P62 and P63) and try to 
explain why they are very distinct from other participants: in our 
case, P63 achieved the lowest learning gain after the activity. P62 
was within one standard deviation of the mean.  

Additionally, we tried to reorganize students on each axis based on 
their learning scores (Fig.7, left side) and their quality of 
collaboration (Fig.7, right side). The first approach did not cluster 
students in any meaningful way; however, the second one showed 
that students with a poor quality of collaboration (left and bottom 
rows) tend to look very dissimilar to everyone else (shown in dark 
blue).  This result suggests that poor collaborative groups can 
potentially be detected using cosine similarity measures.  

  
Figure 7: cosine similarity matrix, reorganized with students' 
learning scores (left) and quality of collaboration (right). 
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Figure 8: Students’ coherence when discussing the task. 
Students in the “visible-gaze” group were significantly more 
coherent (p < .05); higher coherence was also significantly 
correlated with higher learning gains (p < .05). 
We then computed a first measure of students’ coherence: while 
our approach was simplistic (more complicated measures of 
coherence do exist [3]), it provided an approach relatively easy to 
understand and to apply. We built on our previous results using tf-
idf and cosine similarity to assess whether students were re-using 
ideas mentioned earlier in their discussion. More specifically, we 
considered n exchanges and compared them to the m previous 
exchanges. For instance, where n=5 and m=5, we computed the 
similarity between utterances 15 to 20 (current discussion) with 
utterances 10 to 15 (ideas exchanged at the beginning of the 
experiment).  

We then iteratively moved this 5-exchanges window through the 
transcript and averaged the similarity across all exchanges to 
compute our measure of coherence. Using this measure, we found 
that students in the “visible-gaze” condition were more coherent 
than students in the “no-gaze” condition (Fig. 8): F(1,20) = 7.45, p 
= 0.01, Cohen's d = 0.34 (for the visible-gaze group, mean=0.23, 
SD=0.07; for the no-gaze  group, mean=0.15, SD=0.06). This 
measure was positively correlated with students’ learning gain: 
r(19) = 0.540, p = 0.011 (Fig. 9). Those results suggest that 
students who could see the gaze of their partner in real time on the 
screen were more likely to have a coherent discourse; 
additionally, a coherent discourse was more likely to lead to 
higher learning gains.  

  
Figure 9: Correlation between dyads’ dialogue coherence and 
learning gain: r(19) = 0.540, p = 0.011. 

On a side note, we tried various values for n and m. Some of those 
results were not significant, but we always found that students in 
the “visible-gaze” group were more coherent than students in the 
“no-gaze” group. At the end, we observed that comparing 5 
exchanges with the 5 previous utterances produced the results that 
were the clearest and easier to interpret. 
Here we provide an example of a highly coherent exchange 
(cosine similarity of 0.5). We highlighted similar words between 
the two sets of utterances in bold: 
--- Exchange 1 --- 
A: I think that we did say the fifth one down.  
B: OK. So then it’s lesion five. OK.  

A: And you said for your answer, you said the third one down 
whereas I said the sixth one down. The rest are kind of similar 
besides for that kind of like semi-circle in the middle being kind 
of white.  

B: Right, right. Hold on. Number six, < mumbling to self >, the 
number for that side is gonna be, um, this is tricky business. 
A: Yeah it is. < Laughs >.  
--- Exchange 2 (same discussion, continued) --- 
B: Kind of? < Laughs >. 
A: Yeah. So what do you want to do for lesion five? 

B: For lesion five? Um, number… the fifth one down, is that 
what we said originally? I think that that's still the correct way to 
go 
A: OK.  
B: That's what we said initially, right? 
--- End of Exchange 2 --- 
We can observe at least three common repetitions across those two 
segments. First, the reference to lesion 5 introduced by A in the 
first exchange and repeated by B in the second exchange. 
Secondly, both participants express uncertainty by saying “kind 
of” in the two segments. Finally, there is an abundance of 
acknowledgement in the form of keywords like “OK” and “right”. 
All those elements point to a relatively solid common ground 
between the two participants, which is captured by our measure of 
coherence. Our results, illustrated by the exchange above, is in line 
with the results of [5], who showed that convergence is not only 
associated with conceptual understanding but also with affective 
components such as frustration, engagement and confusion. 

3.4 ADDITIONAL RESULTS 
In a subsequent step, we sought baselines to use for comparing 
students’ utterance corpora. For instance, we can imagine that 
comparing the transcripts of students with a baseline of an expert 
discussion on this topic would be predictive of their learning 
gains. To this end, we used two corpora as references: first, we 
used the best student (in terms of her learning score) of our dataset 
(P55). She was in the visible-gaze condition and got an impressive 
80% gain on the post-test, where the average was around 50%. 
Second, we inserted the text that students had to read in the 2nd 
step of the experiment into our dataset. This text is highly 
technical and is likely to pick up students’ use of the particular 
terminology associated with this domain.  
We found that students in the “visible-gaze” group looked more 
like P55: F(1,39), p = 0.04, Cohen's d = 0.35 (visible-gaze 
mean=0.97, SD=0.27; no-gaze mean=0.80, SD=0.20). 
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Interestingly, this measure was positively correlated with students’ 
quality of collaboration: r(38) = 0.545, p < 0.001. There wasn’t 
any difference between the two groups when looking at their 
similarity with the textbook chapter: F(1,39), p = 0.17, Cohen's d 
= 0.10 (visible-gaze mean=0.11, SD=0.04; no-gaze mean=0.09, 
SD=0.04). However, this measure was significantly correlated 
with students’ conceptual understanding of the topic taught: r(38) 
= 0.335, p = 0.035.  

In summary, it appears that taking different baselines is helpful for 
finding relevant predictors of good learning groups. Taking a 
student’s cosine similarity with a standard reference of domain 
knowledge (i.e., a textbook chapter) seems to be associated with 
higher learning on a test. Taking a student’s cosine similarity with 
the “best” student of the dataset seems to be associated with 
productive patterns of collaboration. This makes sense, since 
students’ utterances reflect the way novices discuss and learn 
about a new topic; a scientific text, on the other hand, is produced 
by experts who have mastered the concepts and terminology of a 
domain. In sum, those two features could be advantageously used 
to further explore students’ discussion, as well as to feed machine 
learning algorithms trying to predict students’ learning. 

3.5 PUTTING OUR MEASURES 
TOGETHER: PREDICTING STUDENTS’ 
QUALITY OF COLLABORATION AND 
LEARNING GAINS USING LINGUISTIC 
FEATURES 
Our final contribution is to test whether the measures described 
above have any predictive value. More specifically, can we 
roughly classify students in terms of their learning gains using 
machine learning algorithms? To answer this question, we 
separated our participants into two groups based on the median 
value of students’ learning gains. We then tried to predict in which 
group each student belonged, i.e., below or above the median split. 

We then used our hand-labeled categories from section one (n-
grams), the cosine similarity scores, the convergence measures 
and the coherence metrics as features. The complete dataframe 
contained 60 features and 40 rows. We used the built-in version of 
Support Vector Machine (SVM) provided by Matlab with a 
forward search feature selection and tried various kernels (linear, 
quadratic, polynomial, Gaussian, multilayer perceptron). For the 
learning scores, we found that SVM with a multilayer perceptron 
kernel and 8 features could correctly classify 94.44% of our 
participants. We also used a validation set (4 participants, which 
constitutes 10% of our sample). Those 4 participants were 
randomly selected from our dataset and we predicted whether they 
were above or below the median split on the learning gains after 
we found our best model. On the validation set, our model 
correctly classified 75% of the participants (3/4).  

Those results are impressive, but they need to be hedged with 
healthy skepticism. First, many features were used to make this 
prediction. It is probable that the algorithm is cherry-picking the 
relevant features to improve its accuracy (which is also over-
fitting the data). Secondly, the training set is rather small. There 
are only ~40 students to classify, which is another serious 
limitation. Finally, even though we are using a validation set, it 
should be kept in mind that this set is small (only four datapoints). 
Finally, those results should be contrasted with other baselines, 
such as decision trees or naïve bayes. 

Table 2: Rough classification of students (using a median-split) 
in terms of their learning gains. 

 Accuracy 
on the 
test set 

Accuracy 
on the 

validation 
set 

 
Features 

SVM 
94.44% 
(34/36) 

75% 
(3/4) 

Uncertainty,  
Negations, 
Aux. Verbs,  
Length Sentence,  
Prepositions, 
Number of words used, 
Number of Anaphoras, 
Impersonal Pronouns 
  

In sum, these analyses indicate noteworthy promise in using 
linguistic features to predict students’ learning and ability to 
collaborate with their peers, but those results need to be replicated 
on larger datasets to be truly convincing.  

Interestingly, SVM selected some of the correlations we found 
above between students’ learning gains and particular features of 
our transcripts: number of anaphoras used and keyword showing 
students’ uncertainty. However, other measures such as coherence, 
cosine similarity with a textbook chapter were not included in our 
final model. Instead, it favored low-level measures, such as the 
number of words used by students, the length of their sentence and 
particular grammatical forms (negations, auxiliary verbs, 
prepositions). This shows that some variables may be good 
predictors in isolation, but lose their predictive power when 
associated with other measures. 

4. DISCUSSION 
The goal of this project was to explore various NLP techniques to 
make sense of educational datasets; we favored a “breadth” 
approach where we tried promising techniques rather than 
exploring one specific measure in depth. In future work, we will 
go back to our most promising results (e.g., coherence and cosine 
similarity) and explore them in more detail, as well as to examine 
not only the cosine similarity to the best student of the other 
students’ transcripts but to more aggregate exemplars of ‘better or 
worse students’, such as the upper and lower quartile of the 
students in terms of learning score. 
To recap our results, we have found that: 1) n-grams probabilities 
can help characterize groups of students in terms of building a 
common ground with their partners (anaphoras); 2) cosine 
similarity measures are most useful when used with a “reference” 
corpus (e.g., textbook chapter; transcript of a very good student as 
measured by learning gains); 3) coordination of linguistic style has 
little predictive power in terms of explaining dyads’ collaborative 
learning processes; 4) coherence measures, on the other hand, are 
positively associated with students’ learning 5) using SVM and 
the features mentioned above, we can roughly predict students’ 
learning outcomes with an accuracy higher than 90% (which 
dropped to 75% for our validation set).  

We argue that our approach is especially useful when analyzing 
the results of a controlled experiment. We were able to 
characterize the effects of mutual gaze perception on students’ 
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discourse, and we found interesting predictors for learning gains 
and students’ collaboration quality. However, we also argue that 
those techniques could be used in other domains. For instance, 
comparing the similarity between a reference text and students’ 
utterances has already been used for assessing essays. Coherence 
can be used in similar contexts. More interestingly, those metrics 
could be advantageously used on multi-modal datasets. Eye-
tracking data, for instance, could be converted in a series of word 
tokens representing the location of students’ gaze over time. 
Similarity measures could then be used as described above to 
characterize visual exploration of a problem space. We believe 
that NLP measures have been too rarely used on non-linguistic 
datasets (e.g., gestures, as measured by a kinect sensor; gaze, as 
measured by eye-trackers; arousal, as measured by galvanic skin 
response devices) and could provide new insights into the ways 
that students construct their understanding of a particular concept, 
and to establish a productive collaboration with one another. 

Limitations of this work have been mentioned in previous sections 
(e.g., small dataset, limited amount of error analysis). Replicating 
those results on larger datasets would make a more convincing 
argument for using NLP measures in education. 

5. CONCLUSION 
This paper showed NLP approaches offer substantial promise for 
understanding educational datasets and automating currently 
unwieldy and time-consuming hand analyses. The measures 
described above could easily be applied to other settings, such as 
forums or online discussions. Future work includes refining those 
measures and deepening our sense of their predictive value; 
replicating those results on other datasets; and exploring additional 
topics in NLP (e.g., topic modeling with Latent Semantic Analsyis 
or Latent Dirichlet Allocation).  
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