
Assessing Computational Learning in K-12

Shuchi Grover
Graduate School of Education

Stanford University
Stanford, CA 94305

shuchig@stanford.edu

Stephen Cooper
Computer Science Department

Stanford University
Stanford, CA 94305

coopers@stanford.edu

Roy Pea
Graduate School of Education/

H-STAR Institute
Stanford University
Stanford, CA 94305

roypea@stanford.edu

ABSTRACT
As computing curricula continue to make their way into K-12
schools, the issue of assessing student learning of computational
concepts remains a thorny one. This paper describes the multiple
forms of assessments used in a 6-week middle school curriculum
with the goal of capturing a holistic view of student learning. A
key aspect of this research is the use of instruments developed and
shared in prior research. Included among these were several
questions used in an Israeli nationwide exam to test middle school
student learning of programming in Scratch. This paper reports on
the use of the curriculum in two studies conducted in a public US
middle school classroom, and compares performances of these
students with those reported by the Israeli Ministry of Education
in their large-scale study. It also argues for multiple modes of
assessment of computational learning in K-12 settings.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer Science Education, Curriculum

General Terms
Design, Experimentation, Human Factors.

Keywords
Computational Thinking, Computer Science Education, Computing
education, assessment, K-12 curriculum development.

1. INTRODUCTION
Computational Thinking (CT) is recognized as a necessary skill
for today’s generation of learners [26]. A consensus has been
building around the view that all K-12 children must learn CT
[10] and be offered experiences with computer science. Several
recent efforts are underway among researchers and educators
working in concert with organizations such as CSTA and NSF to
define guidelines for–and designs of K-12 (especially high
school)–curricula. Many of these introductory experiences are
being designed in the context of programming in block-based
environments such as Scratch, Alice, and MIT App Inventor.
Despite the many efforts aimed at tackling the issue of CT
assessment [12,17,25], there are several challenges for assessing
the learning of computational concepts and constructs in these
programming environments.

Without attention to rigorous assessment, CT can have little hope
of making its way successfully into K–12 school education
settings at scale [9]. Our work on assessment of computational
thinking is inspired by–and builds on–noteworthy efforts
described in the next section that have attended to assessment of
computational learning (CL) [6] in the context of Scratch and
Alice. It also draws on recent work on deeper learning and the
need to build and assess core disciplinary knowledge and
students’ ability to transfer conceptual learning, in addition to
interpersonal and intrapersonal abilities [20].

2. RELATED WORK
2.1 Assessment of Computational Learning
In the context of block-based programming, there have been few
studies devoted specifically to assessing foundational CT concepts
like algorithmic thinking, repetition and selection in the
algorithmic flow of control (loops and condition?al logic). Among
these are a series of investigations in the context of game
programming in Alice with middle school students within school
and afterschool settings [25]. These studies were conducted with
the aim of providing motivating experiences in computing
contexts to empower students from underrepresented
communities. The Alice “Fairy Assessment” requires students to
code parts of a predesigned program to accomplish specific tasks.
By having students modify or add methods to existing code, the
researchers assessed student understanding of algorithms,
abstraction and code. This assessment is Alice-based and requires
subjective and time-consuming grading, a challenge for assessing
student code.

Brennan & Resnick [5] highlight issues related to assessment of
CT, especially with grading student-created programs. They
underscore the need for multiple means of assessment. Student-
created artifacts while “rich, concrete and contextualized” and a
necessary tool for assessing students, do not tell the whole story of
student understanding. They lack elements of process and are
often misleading indicators of student understanding [21]. Though
student projects point to apparent fluency as evidenced by the
existence of certain computational constructs in the code, probing
deeper through questions may reveal a different story. When
asked about how parts of their code work, students’ descriptions
often reveal significant conceptual gaps, as they cannot explain
how their code works. It is salient to note a similar observation in
[25] where the authors discuss “students’ partial understanding of
someone else’s code” in their analysis of the results of student
performance on the Fairy Assessment mentioned above. This
problem may occur when students work in pairs or when the
learning environment allows for students to seek and give help, or
copy and paste code. Assessing student projects is also subjective
and time-consuming, especially with a large student population.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ITICSE'14, June 21–25, 2014, Uppsala, Sweden.
Copyright © 2014 ACM 978-1-4503-2833-3/14/06…$15.00.
http://dx.doi.org/10.1145/2591708.2591713

There is a need for more objective assessment instruments to
illuminate student understanding of specific computing concepts
and other CT skills such as debugging, code-tracing, problem
decomposition and pattern generalization. Cooper [18] created a
multiple-choice instrument for measuring learning of Alice
programming concepts, but it has not been used to measure
student learning in K-12 education. Lewis’ online Scratch course
for middle school [14] also uses such “quizzes”.

It is also important that students learn—and be assessed on—the
vocabulary of computing. Analogous to the benefits seen in
developing and using academic vocabulary in science and math
[13], fostering deeper computational learning and an affinity for
CS includes building a language of the domain to aid thinking
about and communicating computational ideas more effectively
and learn the shared vocabulary of the discipline and its
community of people.

This belief is seen in studies conducted in Israel involving
systematic assessments of students’ conceptual vocabulary and
CL in the course of a semester-long class for introducing
computer science concepts to 9th graders [17]. Their work also
tackles aforementioned issues related to relying on student-created
artifacts for assessing CL. They used pre-, interim and post-tests
designed to assess CT through a combination of Bloom’s
modified taxonomy as well as the SOLO taxonomy [3]. They
tested students on CT terms, and also required them to solve
problems related to a pre-designed Scratch programming task.
These were done on paper in response to scripts presented in the
test and through additions to existing code in Scratch in response
to question prompts. The tests were thus more objective and able
to assess a student’s use of appropriate computational constructs
in a pinpointed way. Ben-Ari generously shared the instruments
with the lead author via an email exchange.

2.2 Large-scale Efforts
A few large-scale efforts to roll out introductory computing
curricula at the middle school level include useful ideas for
assessment. Prominent among these are the UK national effort
[23] and the Israel Ministry of Education’s Science and
Technology Excellence Program including a national curriculum
and exam [27]. The UK curriculum includes objective exercises
using Scratch code, Scratch programming assignments and a final
project of the student’s choosing. We have used all three modes of
assessment in our curriculum as well.

It is the use of multiple-choice assessments and attendant rubrics
to measure learning in the Israeli effort [28] that make their work
particularly pertinent. Their national exam comprises 9 questions
(with roughly 30 sub-questions). Arguably such multiple-choice
measures are easier to implement in a large-scale setting than
open-ended student projects. Similar to previous work done in
Israel [17], they use Bloom’s taxonomy to classify the questions
and inferences that can be drawn about the appropriate learning
level of the associated computing concepts. The assessment tool
was used to measure not only student learning but to evaluate the
curriculum that the Ministry hopes to evolve based on results.
This highlights a critical, but often-ignored purpose of
assessment— leveraging assessments to improve a curriculum so
as to better meet learning goals.

With the stated focus on deeper learning of computational
concepts, our research draws on all these ideas of multiple
assessment mechanisms or a “system of assessments” [7] to assess
to deeper learning in a computing context. We thus designed a
curriculum with structured formative and summative assessment

instruments in addition to programming assignments and open-
ended projects in Scratch. By reusing assessment instruments
from prior efforts, we also test their use in new settings. For
example, we employ many of the same questions used in the
Israel national exam, and their grading rubrics. Beyond using
these assessments to measure student learning in a holistic way,
our design-based research effort also used them to refine our
curriculum over two iterations. The following sections describe
our iterative efforts involving our introductory CS course for
middle school using Scratch that not only employed several types
of formative and summative assessments based in Scratch, but
also included novel assessments that measured learners’ ability to
transfer those skills to a text-based programming context. The
latter are described in [11]. We describe the assessments used, and
in the results and discussion section, provide a comparative report
between the results from Israel and ours. We comment on what
we believe makes our effort distinct from prior studies.

3. METHODOLOGY
This section describes design-based research involving two
studies of a six-week middle school module, titled “Foundations
for Advancing Computational Thinking” (FACT). The module
was designed to include elements aimed at building awareness of
computing as a discipline while promoting engagement with
foundational computational concepts such as algorithmic flow of
control comprising sequence, looping constructs, and conditional
logic. The goal of the research was to study multiple and novel
mechanisms for assessing learning of these core computational
concepts, and helping to refine the curriculum.

3.1 Curriculum Design
As a short, introductory module, we believed students would be
well served with material focused on the most basic CT topics.
Our module focused on systematic processing of information,
structured problem decomposition, algorithmic notions of flow of
control including selection and repetition (i.e. conditional logic
and iterative thinking) along with some learner engagement with
abstractions and pattern generalizations as well as debugging. The
organization of the 6-week module is shown in Table 1. Each
topic mapped roughly to a week of course contact time.

The curriculum adopted the following approaches in its design:
• Builds on the rich body of prior research involving children

and novice programmers to guide the pedagogy and
assessments for the content being taught. These include:
using worked examples for conceptual learning [24], using
pseudo-code [4], teaching reading/code-tracing [15], and
using frequent multiple-choice “quizzes” to push student
understanding and reinforce concepts learned [9];

• Makes explicit the foundational ideas of computer science
and computational thinking [16];

• Uses academic language to explain concepts in terms of the
vocabulary of the computer science domain [13]; and

• Promotes active, constructivist learning in Scratch through
several hands-on activities and assignments.

Table 1: Topics covered in 6-week FACT Intro CS module
Unit 1 Computing is Everywhere! / Algorithms / Programs
Unit 2 Serial execution; Problem solving, task breakdown,

solution as precise sequence of instructions
Unit 3 Iterative/repetitive flow of control: Loops
Unit 4 Data and variables
Unit 5 Boolean Logic & Advanced Loops
Unit 6 Selective flow of control: Conditional thinking

3.1.1 Design of Formative Assessment of CL
Formative assessment was integrated throughout the course as
multiple-choice quizzes, designed to give learners encouraging
feedback and explanations. Many quizzes included small snippets
of Scratch code on which questions were based. These were
similar to those used in existing curricula [14,23]. These
assessments aimed to help learners develop familiarity with code
tracing and the ability to understand an algorithm in Scratch or in
pseudo-code [4,15]. Figure 1 shows three sample quiz questions.
Correct answers to quiz questions were accompanied by
explanations. Some formative assessments also involved
presenting jumbled blocks in Scratch required for a program (akin
to Parson’s puzzles), and having students snap them in correct
order [19].

The curriculum placed a heavy emphasis on learning by doing in
Scratch. In addition to open-ended time to dabble in Scratch, there
were specific assignments that built on the concepts taught in the
preceding lecture(s). Sample assignments include making a
“spirograph” (using nested loops); a polygon generator depending
on a size and shape specified by the user (employing user inputs
and variables); “4-quadrant art” which colors the screen in
different colors depending on the position of the cat (using
conditionals with compound Boolean conditions); 2-paddle pong
(using conditionals within repeat-until loops); “guess my number”
game (which uses all the constructs taught through the course).
The assignments were manually graded based on rubrics provided
to students. Students had the freedom to design specific elements
of their artifacts or add to them.
Fill in the blanks below:

What is the value of x at the end of the script:

What is the value of y at the end of the script:

In the code below, how may times
will the sound 'La' be played?

	

	

x and y are variables. Consider the following code snippet:
x = 5; y = 7;
IF (x > 4) AND (y < 6)
{
 <some action>
}
Will <some action> within the IF condition above be executed?

Figure 1: Sample quiz questions used in formative assessments

3.1.2 Design of Summative Assessments of CL
The pre- and post-test instruments borrowed from earlier work in
Israel [17,28], both of which used the Scratch environment. The
Israeli national curriculum [28], like ours, focuses on task
decomposition, sequences, loops and conditionals as the
foundational building blocks of algorithmic thinking. This made it

convenient to reuse questions from their exam. We incorporated
questions 2, 4, 5, 7, 8 and 9 from their national exam [28]. We did
not incorporate the other three questions since we did not get
access to details on those questions prior to our study’s launch. In
addition to the six questions from the national exam, we required
students to provide definitions of key computational terms such as
algorithm, variable, initialization, conditional, Boolean variable,
and loop. These were borrowed from [17] as were some additional
questions to test student understanding of algorithms written in
pseudo-code. We also included questions that used snippets of
basic Scratch code to test if students could identify the core
constructs in them as used in [8]. Lastly, we added a few
questions of our own to assess code-tracing and debugging skills
in snippets of code that used more advanced looping and
conditional logic, as shown in Figure 2.

When the code above is executed, what is value of 'THE-Number' at the end of
the script for the following inputs after ‘counter’ is set to 3-

This code below does not work. Can you figure out why? [Note: This program is
executed on a stage which has red bricks]

	

Figure 2: Questions added to our post-test in our studies (in
addition to questions from Israel)

3.2 Study and Data Measures
3.2.1 Participants & Procedures
For Study 1, the FACT module was taught for six weeks in April-
May, 2013 in a public middle school classroom in Northern
California. The student sample comprised 26 children from 7th
and 8th grade (21 boys and 5 girls, mean age: ~13 years) enrolled
in a semester-long “Computers” elective class. The course was

taught face-to-face in a computer lab (lectures and demonstrations
in Scratch), with the units on conditionals and Boolean logic
offered online in the form of short videos. The online units were
done as a pilot to get student feedback ahead of online
deployment of the entire module.

For Study 2, the FACT curriculum was taught in Sept-Oct, 2013
in the same middle school as Study 1, but with a new cohort of
students in the “Computers” elective class (20 boys, 8 girls, mean
age: 12.3 years). Study 2 involved the use of a completely online
version of the course deployed on the Stanford OpenEdX online
platform. The lectures and Scratch demonstrations in this version
of FACT were in the form of short Khan Academy-style videos
ranging between 1-6 minutes in length. Some changes were made
to the assignments and duration for which certain concepts were
taught based on our experiences, student performance, and student
feedback from Study 1. For example, we devoted more time to
loops and variables; more projects involving games and art were
incorporated; and a more formal final project requirement was
added with student interviews based on the project. The quizzes
described in section 3.1.1 used automated grading and feedback in
OpenEdX in Study 2. In Study 1 these were administered through
Schoology, a learning management system used by the school,
which also allowed for auto-grading and feedback. In both
studies, the class met for 55 minutes four times per week. The
lead researcher on this effort was also the curriculum developer
and teacher for the FACT module. An independent researcher
assisted with subjective grading.

3.2.2 Data Measures
In both studies, data were captured for assessing the curriculum
and student learning:

• Prior Experience Survey: These gathered information about
students’ prior experiences in computational activities,
especially programming [1]. This data was used for
regression analyses to explain variances in student
performance that are beyond of the scope of this paper.

• Pre-Test: This measured prior knowledge of computational
concepts, including questions on the definitions of computing
terms, student understanding of serial execution of
algorithms presented in English, and questions that tested
student knowledge of Scratch and programming in general.
These were borrowed from [8,17].

• Post-Test: This measured student knowledge of
computational concepts, the ability to read and decipher code
or pseudo-code, and to debug a piece of code. The focus of
these tasks was on algorithmic flow of control: sequence,
loops, and conditionals. As described in 3.1.2, the post-test
included questions from [8,17,28] as well as those we
created. The pretest was a subset of the post-test as it seemed
unreasonable to give children a large number of problems on
skills and content completely alien and new to most students.

• Quizzes: Although not used to “test” students, data on
student performance in these formative assessments were
gathered as indicators for monitoring student progress and
capturing conceptual targets of difficulty.

• Scratch Assignments: These were given throughout the
course and graded according to a rubric.

• Final Scratch Projects & Student Interviews (only in Study
2): Students used the final project-guiding document used in
the UK curriculum [23] for planning and reflecting on their
project. Students were interviewed on their final projects.
Transcription and analysis of these is yet to completed.

Additional instruments such as a “Preparation of Future
Learning” [22] test designed to assess transfer of learning to a
text-based programming language [11] are outside the scope of
this paper. The Results section focuses on the post-test in which
questions from the Israel national exam were used and additional
questions akin to them designed for an online test. The open-
ended summative assessments that included student-created
games as well as interviews with students in keeping with the
ideas of holistic assessment discussed earlier are not discussed in
this paper.

4. RESULTS
Figure 3 shows the pre-post test scores (both averaged out of 100)
in Studies 1 and 2. All the points are above the 45-degree line,
indicating that all students had higher averages on the post-test
than the pre-test. Statistical tests t-tests on the difference of the
mean learning gains revealed that the learning gain in Study 2 was
significantly higher than that in Study 1. Table 1 shows the test
scores by gender, which suggests that girls in this sample
performed significantly better than boys, although there were no
significant differences by age or grade.

Figure 3: Pre-Post test average scores in Study #1 & Study #2

Table 1: Student Test Outcomes by Gender
 Mean (SE) p-value
By Gender Male (n = 40) Female (n = 12)

Pre-Test 29.9 (3.3) 38.4 (4.8) 0.20
Post-Test 77.1 (3.2) 89.7 (2.5) 0.04*

Note: p-values for the Pre-Test and Post-test come from a t-test
of equality of means across samples with unequal variance.
Given the non-normal distribution of the Post-test, the Mann-
Whitney (Wilcoxon) rank sum test was also used and the p-value
in that test was 0.07 for Post-test scores by gender.

Figure 5 shows student performance in the 6 questions containing
22 sub-questions that were re-used from the 2012 Israel national
exam. It compares student performance for the 54 participants in
our two studies with that of the 4082 students in Israel [28]. We
found the difference in performance on all questions not
statistically significant except in Question 9 in which our students
performed significantly better than the Israel students scoring an
average of almost 70% as compared to their 57%. We discuss this
in more detail in Section 4.1. The Israel study report broke down
the assessment measures according to thinking skills based on a
modified version of Bloom’s taxonomy as comprising
Remembering & Understanding, Applying & Analyzing, and

Evaluating & Creating. The figures for the 2012 Israel Exam were
82%, 78% & 64% respectively for these three categories. Those
corresponding figures for our students were 83%, 85% and 74%,
however it is important to note that a fair comparison cannot be
made as the calculations in the former were made based on the
whole exam comprising 9 questions; and ours are based only on
the 6 (out of those 9) questions that we used.

Figure 4: Comparison of Student Performance in Study #1 & #2

vs. 2012 Israel results (on 6 of 9 questions)

Additionally questions in the Israeli study were categorized
according to topics taught, classified as serial execution (8%),
conditionals (30%), Forever/Forever-If (12%) and For Loops
(50%). The numbers in parentheses represent the percentage of
the exam grade that was associated with that topic. The Israeli
students’ scores across the whole exam on the four topics was
reported to be 87%, 85%, 89% & 64% respectively. We could not
calculate corresponding figures for these as we were missing
some questions, however the breakdown of our entire exam by
topics taught is seen in Table 2 below.

Table 2: Post-Test Scores Breakdown by CS Topics Taught
 Mean (SD)

Overall Score 80.6 (19.2)

By CS Topic

Vocabulary 72.9 (20.6)

Serial Execution 94.1 (17.6)

Conditionals 84.7 (19.6)

Loops 75.7 (24.1)

4.1 Discussion of Results
Based on results shown above, our students seemed to learn well
for both Study 1 and 2 iterations of the 6-week FACT module.
Based on student performance on the post-test in Study 1, we
altered some strategies in Study 2- devoting more teaching time to
certain topics, and a few different examples and programming
assignments. This clearly helped as the student performance in the
post-test in Study 2 improved.

Regarding the comparison of our students’ performance following
FACT on the same questions given to the students in Israel in
2012 following their national curriculum, it is worth noting the
following distinctions in the research contexts. The Israel results
were based on a sample of 4,082 7th grade students, while both of
our research studies included both 7th and 8th grade students,
comprising a total of 54 students. The Israel nationwide exam was
given following a yearlong Introductory CS class. According to
information provided by Zur Bargury to the lead author, the class
was held for 2 hours a week for a school year, a total of 60 hours.

The results shared here from our studies are from the post-test
taken after roughly 24 hours over 6 weeks of learning with the
FACT module. While we have demographic and other data, there
is no such data available to us on the Israel students. In the Israel
study, students taking this class were selected from within their
schools as those “who excelled in their age group.” In our studies,
students were in the elective class based on stated interest or a
counselor placing them in this elective; it was not seen as a part of
the core curriculum or connected to official testing.

Despite these differences in the Israeli context from ours, most
results were statistically no different. The only difference that
warrants comment is that our students’ performance in both Study
1 and Study 2 on Question 9 were significantly better than those
of students in Israel. This was the only question that did not have
multiple choice answers provided but required students to fill in
10 blanks in a Scratch script and involved the highest level of
thinking, “Evaluating and Creating” in Bloom’s taxonomy. Our
students’ success on this question may be due to a curricular focus
on deeper understanding of concepts as well as practice in tracing
existing code and reading/writing pseudo-code. Not having more
details on the curriculum used in Israel, we are hesitant to
comment on what may have affected the result in their case.

5. CONCLUSIONS & FUTURE WORK
Although student results on the post-test are encouraging overall,
we hope to get a more holistic view of student learning, especially
for children who did not perform as well on the test. To this end
we are currently coding student interviews and grading final
projects from Study 2. Preliminary results suggest that
decontextualized assessment measures requiring reading abilities
to understand written questions may not favor the English
Language Learners in the student population. The projects and
interview shows evidence of understanding of computational
concepts even among low performers in the post-test, in addition
to the obvious increased confidence and engagement levels when
describing their own projects in contrast to discussing a question
from the post-test, where they appear to get confused about some
aspects of questions that appear ambiguous to them.
It is noteworthy that efforts to improve the instruction and Scratch
assignments in Study 2 following Study 1 resulted in learning
gains in Study 2 despite using an all-online version of FACT. We
attribute the success of the FACT curriculum, especially on
advanced questions like #9 of the Israel exam, to a good balance
between explanation, demonstration of worked examples, use of
pseudo-code, regular assessments that required children to trace
(read) Scratch script and answer questions based on them, and
several hands-on assignments in Scratch. However, future
research is required to tease apart the productive conditions of the
learning environment. Though unguided or minimally guided
instructional approaches are popular among teachers employing
easy-to-use environments like Scratch, we were guided by the
argument that these approaches are less effective and less efficient
than instructional approaches that place a strong emphasis on
guidance of the student learning process [16]. A curriculum such
as the one proposed in this research aims to help students see
deeper structures in their computational artifacts and assess this
learning via appropriate assessments.

A salient finding from our reuse of questions from the Israel exam
is that student performance seems to be remarkably similar
despite the distinctions between our research contexts, and the
curriculum, location, student population as well as sample size
taking the Israel National Exam. Perhaps more interesting is that
both efforts are being used in part to hone a CS curriculum. Given

that two completely unrelated curricula taught across the world to
two very disparate groups of students presented such similar
results suggests that the ease or difficulty that students face in
learning certain computational concepts transcends teaching
methods and materials, and are perhaps a function of age and
cognitive maturity more than anything else.
A significant contribution of our research is the demonstration of
the use of multiple forms of assessment in a structured
introductory CS curriculum in a K-12 setting. Neither multiple-
choice questions nor open-ended projects alone tell the whole
story of student understanding. It would be unwise to ignore
learner agency, motivation, creative expression and design
thinking that students bring to projects of their own choosing [2].
This is especially critical when one of the stated goals of
introducing CS is to inspire children to pursue this discipline and
broaden the CS pipeline. However, it would be equally imprudent
to not include objective measures that can be scaled and assess
students’ understanding of core computational concepts as well as
associated skills such as debugging and code-tracing.

Perhaps the most noteworthy aspect of this effort is the reuse of
assessment ideas and instruments from prior and ongoing efforts
in different parts of the world to build a cumulative knowledge
base of a learning science for computational thinking. This is
especially pertinent as our individual nations move concurrently
but separately towards a shared goal of building a computationally
literate generation of learners. Leveraging the efforts of others and
testing curricular instruments in new settings helps validate ideas
and move the field forward.

6. REFERENCES
[1] Barron, B. 2004. Learning ecologies for technological fluency:

Gender and experience differences. Journal of Educational
Computing Research, 31(1), 1-36.

[2] Barron B. & Daring-Hammond, L. (2008). How can we teach for
meaningful learning? In Daring-Hammond, L., Barron, B.,
Pearson, P. D., Schoenfeld, A. H., Stage, E. K., Zimmerman, T.
D., Cervetti, G. N., & Tilson, J. L. 2008. Powerful learning:
What we know about teaching for understanding. Jossey-Bass

[3] Biggs, J. B., & Collis, K. F. 1982. Evaluating the quality of
learning. New York: Academic Press.

[4] Bornat, R. 1987. Programming from first principles. Prentice
Hall International.

[5] Brennan, K., & Resnick, M. 2012. New frameworks for studying
and assessing the development of computational thinking. Paper
presented at AERA 2012, Vancouver, Canada.

[6] Cooper, S., Pérez, L. C., & Rainey, D. 2010. K-12 computational
learning. Communications of the ACM, 53(11), 27-29.

[7] Conley, D. T., & Darling-Hammond, L. (2013). Creating
Systems of Assessment for Deeper Learning.

[8] Ericson, B., & McKlin, T. 2012. Effective and sustainable
computing summer camps. Proceedings of the 43rd ACM
technical symposium on CS Education, 289-294.

[9] Glass, A. L., & Sinha, N. 2013. Multiple-Choice Questioning Is
an Efficient Instructional Methodology That May Be Widely
Implemented in Academic Courses to Improve Exam
Performance. Current Directions in Psychological
Science, 22(6), 471-477.

[10] Grover, S. & Pea, R. 2013. Computational Thinking in K–12 A
review of the state of the field. Educational Researcher, 42(1),
38-43.

[11] Grover, S., Pea, R. & Cooper, S. (2014). Expansive Framing and
Preparation for Future Learning in Middle-School Computer
Science. In Proceedings of the 11th International Conference of
the Learning Sciences (2014), Boulder, CO

[12] Ioannidou, A., Repenning, A., & Webb, D. C. 2009.
AgentCubes: Incremental 3D end-user development. Journal of
Visual Languages & Computing, 20(4), 236-251.

[13] Lemke, J.L. (1990). Talking science: Language, learning and
values. Westport, CT: Ablex Publishing.

[14] Lewis, C. M. (2011). Is pair programming more effective than
other forms of collaboration for young students? Computer
Science Education, 21(2), 105-134.

[15] Lopez, M., Whalley, J., Robbins, P., & Lister, R. 2008.
Relationships between reading, tracing and writing skills in
introductory programming. Proceedings of the 4th International
Workshop on Computing Education Research, 101-112.

[16] Mayer, R. E. (2004). Should there be a three-strikes rule against
pure discovery learning?. American Psychologist, 59(1), 14.

[17] Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M., 2010.
Learning computer science concepts with Scratch. Proceedings
of the Sixth International Workshop on Computing Education
Research (ICER '10), 69-76.

[18] Moskal, B., Lurie, D., & Cooper, S. 2004. Evaluating the
effectiveness of a new instructional approach. ACM SIGCSE
Bulletin, 36(1), 75-79.

[19] Parsons, D. & Haden, P. 2006. Parson's programming puzzles: a
fun and effective learning tool for first programming courses.
Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52, 157-163.

[20] Pellegrino, J. W., & Hilton, M. L. (Eds.). (2013). Education for
life and work: Developing transferable knowledge and skills in
the 21st century. National Academies Press.

[21] Piech, C., Sahami, M., Koller, D., Cooper, S. & Blikstein, P.
2012. Modeling how students learn to program. Proceedings of
the 43rd ACM technical symposium on Computer Science
Education, 153-160.

[22] Schwartz, D. L. & Martin, T. (2004). Inventing to prepare for
future learning: The hidden efficiency of encouraging original
student production in statistics instruction. Cognition and
Instruction, 22(2), 129-184.

[23] Scott, J. 2013. The royal society of Edinburgh/British computer
society computer science exemplification project. Proceedings
of ITiCSE'13, 313-315.

[24] Sweller, J., & Cooper, G. A. 1985. The use of worked examples
as a substitute for problem solving in learning algebra. Cognition
and Instruction, 2(1), 59-89.

[25] Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. 2012.
The Fairy Performance Assessment: Measuring Computational
Thinking in Middle School. Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education, 215-220.

[26] Wing, J. 2006. Computational Thinking. Communications of the
ACM, 49(3), 33-36.

[27] Zur Bargury, I. 2012. A new Curriculum for Junior-High in
Computer Science. Proceedings of ITiCSE'12, 204-208, Haifa,
Israel.

[28] Zur Bargury, I., Pârv, B. & Lanzberg, D. 2013. A Nationwide
Exam as a Tool for Improving a New Curriculum. Proceedings
of ITiCSE'13, 267-272. Canterbury, England, UK.

