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ABSTRACT 
As computing curricula continue to make their way into K-12 
schools, the issue of assessing student learning of computational 
concepts remains a thorny one. This paper describes the multiple 
forms of assessments used in a 6-week middle school curriculum 
with the goal of capturing a holistic view of student learning. A 
key aspect of this research is the use of instruments developed and 
shared in prior research. Included among these were several 
questions used in an Israeli nationwide exam to test middle school 
student learning of programming in Scratch. This paper reports on 
the use of the curriculum in two studies conducted in a public US 
middle school classroom, and compares performances of these 
students with those reported by the Israeli Ministry of Education 
in their large-scale study. It also argues for multiple modes of 
assessment of computational learning in K-12 settings. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Computational Thinking, Computer Science Education, Computing 
education, assessment, K-12 curriculum development. 

1. INTRODUCTION 
Computational Thinking (CT) is recognized as a necessary skill 
for today’s generation of learners [26]. A consensus has been 
building around the view that all K-12 children must learn CT 
[10] and be offered experiences with computer science. Several 
recent efforts are underway among researchers and educators 
working in concert with organizations such as CSTA and NSF to 
define guidelines for–and designs of K-12 (especially high 
school)–curricula. Many of these introductory experiences are 
being designed in the context of programming in block-based 
environments such as Scratch, Alice, and MIT App Inventor. 
Despite the many efforts aimed at tackling the issue of CT 
assessment [12,17,25], there are several challenges for assessing 
the learning of computational concepts and constructs in these 
programming environments.  

Without attention to rigorous assessment, CT can have little hope 
of making its way successfully into K–12 school education 
settings at scale [9]. Our work on assessment of computational 
thinking is inspired by–and builds on–noteworthy efforts 
described in the next section that have attended to assessment of 
computational learning (CL) [6] in the context of Scratch and 
Alice. It also draws on recent work on deeper learning and the 
need to build and assess core disciplinary knowledge and 
students’ ability to transfer conceptual learning, in addition to 
interpersonal and intrapersonal abilities [20]. 

2. RELATED WORK 
2.1 Assessment of Computational Learning 
In the context of block-based programming, there have been few 
studies devoted specifically to assessing foundational CT concepts 
like algorithmic thinking, repetition and selection in the 
algorithmic flow of control (loops and condition?al logic). Among 
these are a series of investigations in the context of game 
programming in Alice with middle school students within school 
and afterschool settings [25]. These studies were conducted with 
the aim of providing motivating experiences in computing 
contexts to empower students from underrepresented 
communities. The Alice “Fairy Assessment” requires students to 
code parts of a predesigned program to accomplish specific tasks. 
By having students modify or add methods to existing code, the 
researchers assessed student understanding of algorithms, 
abstraction and code. This assessment is Alice-based and requires 
subjective and time-consuming grading, a challenge for assessing 
student code.  

Brennan & Resnick [5] highlight issues related to assessment of 
CT, especially with grading student-created programs. They 
underscore the need for multiple means of assessment. Student-
created artifacts while “rich, concrete and contextualized” and a 
necessary tool for assessing students, do not tell the whole story of 
student understanding. They lack elements of process and are 
often misleading indicators of student understanding [21]. Though 
student projects point to apparent fluency as evidenced by the 
existence of certain computational constructs in the code, probing 
deeper through questions may reveal a different story. When 
asked about how parts of their code work, students’ descriptions 
often reveal significant conceptual gaps, as they cannot explain 
how their code works. It is salient to note a similar observation in 
[25] where the authors discuss “students’ partial understanding of 
someone else’s code” in their analysis of the results of student 
performance on the Fairy Assessment mentioned above. This 
problem may occur when students work in pairs or when the 
learning environment allows for students to seek and give help, or 
copy and paste code. Assessing student projects is also subjective 
and time-consuming, especially with a large student population. 
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There is a need for more objective assessment instruments to 
illuminate student understanding of specific computing concepts 
and other CT skills such as debugging, code-tracing, problem 
decomposition and pattern generalization. Cooper [18] created a 
multiple-choice instrument for measuring learning of Alice 
programming concepts, but it has not been used to measure 
student learning in K-12 education. Lewis’ online Scratch course 
for middle school [14] also uses such “quizzes”.  

It is also important that students learn—and be assessed on—the 
vocabulary of computing. Analogous to the benefits seen in 
developing and using academic vocabulary in science and math 
[13], fostering deeper computational learning and an affinity for 
CS includes building a language of the domain to aid thinking 
about and communicating computational ideas more effectively 
and learn the shared vocabulary of the discipline and its 
community of people.  

This belief is seen in studies conducted in Israel involving 
systematic assessments of students’ conceptual vocabulary and 
CL in the course of a semester-long class for introducing 
computer science concepts to 9th graders [17]. Their work also 
tackles aforementioned issues related to relying on student-created 
artifacts for assessing CL. They used pre-, interim and post-tests 
designed to assess CT through a combination of Bloom’s 
modified taxonomy as well as the SOLO taxonomy [3]. They 
tested students on CT terms, and also required them to solve 
problems related to a pre-designed Scratch programming task. 
These were done on paper in response to scripts presented in the 
test and through additions to existing code in Scratch in response 
to question prompts. The tests were thus more objective and able 
to assess a student’s use of appropriate computational constructs 
in a pinpointed way. Ben-Ari generously shared the instruments 
with the lead author via an email exchange. 

2.2 Large-scale Efforts 
A few large-scale efforts to roll out introductory computing 
curricula at the middle school level include useful ideas for 
assessment. Prominent among these are the UK national effort 
[23] and the Israel Ministry of Education’s Science and 
Technology Excellence Program including a national curriculum 
and exam [27]. The UK curriculum includes objective exercises 
using Scratch code, Scratch programming assignments and a final 
project of the student’s choosing. We have used all three modes of 
assessment in our curriculum as well.  

It is the use of multiple-choice assessments and attendant rubrics 
to measure learning in the Israeli effort [28] that make their work 
particularly pertinent. Their national exam comprises 9 questions 
(with roughly 30 sub-questions). Arguably such multiple-choice 
measures are easier to implement in a large-scale setting than 
open-ended student projects. Similar to previous work done in 
Israel [17], they use Bloom’s taxonomy to classify the questions 
and inferences that can be drawn about the appropriate learning 
level of the associated computing concepts. The assessment tool 
was used to measure not only student learning but to evaluate the 
curriculum that the Ministry hopes to evolve based on results. 
This highlights a critical, but often-ignored purpose of 
assessment— leveraging assessments to improve a curriculum so 
as to better meet learning goals.  

With the stated focus on deeper learning of computational 
concepts, our research draws on all these ideas of multiple 
assessment mechanisms or a “system of assessments” [7] to assess 
to deeper learning in a computing context. We thus designed a 
curriculum with structured formative and summative assessment 

instruments in addition to programming assignments and open-
ended projects in Scratch. By reusing assessment instruments 
from prior efforts, we also test their use in new settings. For 
example, we employ many of the same questions used in the 
Israel national exam, and their grading rubrics. Beyond using 
these assessments to measure student learning in a holistic way, 
our design-based research effort also used them to refine our 
curriculum over two iterations. The following sections describe 
our iterative efforts involving our introductory CS course for 
middle school using Scratch that not only employed several types 
of formative and summative assessments based in Scratch, but 
also included novel assessments that measured learners’ ability to 
transfer those skills to a text-based programming context. The 
latter are described in [11]. We describe the assessments used, and 
in the results and discussion section, provide a comparative report 
between the results from Israel and ours. We comment on what 
we believe makes our effort distinct from prior studies. 

3. METHODOLOGY 
This section describes design-based research involving two 
studies of a six-week middle school module, titled “Foundations 
for Advancing Computational Thinking” (FACT). The module 
was designed to include elements aimed at building awareness of 
computing as a discipline while promoting engagement with 
foundational computational concepts such as algorithmic flow of 
control comprising sequence, looping constructs, and conditional 
logic. The goal of the research was to study multiple and novel 
mechanisms for assessing learning of these core computational 
concepts, and helping to refine the curriculum. 

3.1 Curriculum Design 
As a short, introductory module, we believed students would be 
well served with material focused on the most basic CT topics. 
Our module focused on systematic processing of information, 
structured problem decomposition, algorithmic notions of flow of 
control including selection and repetition (i.e. conditional logic 
and iterative thinking) along with some learner engagement with 
abstractions and pattern generalizations as well as debugging. The 
organization of the 6-week module is shown in Table 1. Each 
topic mapped roughly to a week of course contact time.  

The curriculum adopted the following approaches in its design: 
• Builds on the rich body of prior research involving children 

and novice programmers to guide the pedagogy and 
assessments for the content being taught. These include: 
using worked examples for conceptual learning [24], using 
pseudo-code [4], teaching reading/code-tracing [15], and 
using frequent multiple-choice “quizzes” to push student 
understanding and reinforce concepts learned [9]; 

• Makes explicit the foundational ideas of computer science 
and computational thinking [16];  

• Uses academic language to explain concepts in terms of the 
vocabulary of the computer science domain [13]; and 

• Promotes active, constructivist learning in Scratch through 
several hands-on activities and assignments. 

Table 1: Topics covered in 6-week FACT Intro CS module 
Unit 1 Computing is Everywhere! / Algorithms / Programs 
Unit 2 Serial execution; Problem solving, task breakdown, 

solution as precise sequence of instructions 
Unit 3 Iterative/repetitive flow of control: Loops  
Unit 4 Data and variables 
Unit 5 Boolean Logic & Advanced Loops 
Unit 6 Selective flow of control: Conditional thinking  



3.1.1 Design of Formative Assessment of CL  
Formative assessment was integrated throughout the course as 
multiple-choice quizzes, designed to give learners encouraging 
feedback and explanations. Many quizzes included small snippets 
of Scratch code on which questions were based. These were 
similar to those used in existing curricula [14,23]. These 
assessments aimed to help learners develop familiarity with code 
tracing and the ability to understand an algorithm in Scratch or in 
pseudo-code [4,15]. Figure 1 shows three sample quiz questions. 
Correct answers to quiz questions were accompanied by 
explanations. Some formative assessments also involved 
presenting jumbled blocks in Scratch required for a program (akin 
to Parson’s puzzles), and having students snap them in correct 
order [19]. 

The curriculum placed a heavy emphasis on learning by doing in 
Scratch. In addition to open-ended time to dabble in Scratch, there 
were specific assignments that built on the concepts taught in the 
preceding lecture(s). Sample assignments include making a 
“spirograph” (using nested loops); a polygon generator depending 
on a size and shape specified by the user (employing user inputs 
and variables); “4-quadrant art” which colors the screen in 
different colors depending on the position of the cat (using 
conditionals with compound Boolean conditions); 2-paddle pong 
(using conditionals within repeat-until loops); “guess my number” 
game (which uses all the constructs taught through the course). 
The assignments were manually graded based on rubrics provided 
to students. Students had the freedom to design specific elements 
of their artifacts or add to them.  
Fill in the blanks below: 

 
What is the value of x at the end of the script:

 

What is the value of y at the end of the script:

 

In the code below, how may times 
will the sound 'La' be played? 

	  

	  

x and y are variables. Consider the following code snippet: 
x = 5; y = 7; 
IF (x > 4) AND (y < 6) 
{ 
     <some action> 
} 
Will <some action> within the IF condition above be executed? 

 

Figure 1: Sample quiz questions used in formative assessments 

3.1.2 Design of Summative Assessments of CL 
The pre- and post-test instruments borrowed from earlier work in 
Israel [17,28], both of which used the Scratch environment. The 
Israeli national curriculum [28], like ours, focuses on task 
decomposition, sequences, loops and conditionals as the 
foundational building blocks of algorithmic thinking. This made it 

convenient to reuse questions from their exam. We incorporated 
questions 2, 4, 5, 7, 8 and 9 from their national exam [28]. We did 
not incorporate the other three questions since we did not get 
access to details on those questions prior to our study’s launch. In 
addition to the six questions from the national exam, we required 
students to provide definitions of key computational terms such as 
algorithm, variable, initialization, conditional, Boolean variable, 
and loop. These were borrowed from [17] as were some additional 
questions to test student understanding of algorithms written in 
pseudo-code. We also included questions that used snippets of 
basic Scratch code to test if students could identify the core 
constructs in them as used in [8]. Lastly, we added a few 
questions of our own to assess code-tracing and debugging skills 
in snippets of code that used more advanced looping and 
conditional logic, as shown in Figure 2.  

When the code above is executed, what is value of 'THE-Number' at the end of 
the script for the following inputs after ‘counter’ is set to 3-  

 
This code below does not work. Can you figure out why? [Note: This program is 
executed on a stage which has red bricks] 

	  

Figure 2: Questions added to our post-test in our studies (in 
addition to questions from Israel) 

3.2 Study and Data Measures 
3.2.1 Participants & Procedures 
For Study 1, the FACT module was taught for six weeks in April-
May, 2013 in a public middle school classroom in Northern 
California. The student sample comprised 26 children from 7th 
and 8th grade (21 boys and 5 girls, mean age: ~13 years) enrolled 
in a semester-long “Computers” elective class. The course was 



taught face-to-face in a computer lab (lectures and demonstrations 
in Scratch), with the units on conditionals and Boolean logic 
offered online in the form of short videos. The online units were 
done as a pilot to get student feedback ahead of online 
deployment of the entire module.  

For Study 2, the FACT curriculum was taught in Sept-Oct, 2013 
in the same middle school as Study 1, but with a new cohort of 
students in the “Computers” elective class (20 boys, 8 girls, mean 
age: 12.3 years). Study 2 involved the use of a completely online 
version of the course deployed on the Stanford OpenEdX online 
platform. The lectures and Scratch demonstrations in this version 
of FACT were in the form of short Khan Academy-style videos 
ranging between 1-6 minutes in length. Some changes were made 
to the assignments and duration for which certain concepts were 
taught based on our experiences, student performance, and student 
feedback from Study 1. For example, we devoted more time to 
loops and variables; more projects involving games and art were 
incorporated; and a more formal final project requirement was 
added with student interviews based on the project. The quizzes 
described in section 3.1.1 used automated grading and feedback in 
OpenEdX in Study 2. In Study 1 these were administered through 
Schoology, a learning management system used by the school, 
which also allowed for auto-grading and feedback. In both 
studies, the class met for 55 minutes four times per week. The 
lead researcher on this effort was also the curriculum developer 
and teacher for the FACT module. An independent researcher 
assisted with subjective grading. 

3.2.2 Data Measures 
In both studies, data were captured for assessing the curriculum 
and student learning: 

• Prior Experience Survey: These gathered information about 
students’ prior experiences in computational activities, 
especially programming [1]. This data was used for 
regression analyses to explain variances in student 
performance that are beyond of the scope of this paper. 

• Pre-Test: This measured prior knowledge of computational 
concepts, including questions on the definitions of computing 
terms, student understanding of serial execution of 
algorithms presented in English, and questions that tested 
student knowledge of Scratch and programming in general. 
These were borrowed from [8,17]. 

• Post-Test: This measured student knowledge of 
computational concepts, the ability to read and decipher code 
or pseudo-code, and to debug a piece of code. The focus of 
these tasks was on algorithmic flow of control: sequence, 
loops, and conditionals. As described in 3.1.2, the post-test 
included questions from [8,17,28] as well as those we 
created. The pretest was a subset of the post-test as it seemed 
unreasonable to give children a large number of problems on 
skills and content completely alien and new to most students.  

• Quizzes: Although not used to “test” students, data on 
student performance in these formative assessments were 
gathered as indicators for monitoring student progress and 
capturing conceptual targets of difficulty. 

• Scratch Assignments: These were given throughout the 
course and graded according to a rubric. 

• Final Scratch Projects & Student Interviews (only in Study 
2): Students used the final project-guiding document used in 
the UK curriculum [23] for planning and reflecting on their 
project. Students were interviewed on their final projects. 
Transcription and analysis of these is yet to completed. 

Additional instruments such as a “Preparation of Future 
Learning” [22] test designed to assess transfer of learning to a 
text-based programming language [11] are outside the scope of 
this paper. The Results section focuses on the post-test in which 
questions from the Israel national exam were used and additional 
questions akin to them designed for an online test. The open-
ended summative assessments that included student-created 
games as well as interviews with students in keeping with the 
ideas of holistic assessment discussed earlier are not discussed in 
this paper. 

4. RESULTS  
Figure 3 shows the pre-post test scores (both averaged out of 100) 
in Studies 1 and 2. All the points are above the 45-degree line, 
indicating that all students had higher averages on the post-test 
than the pre-test. Statistical tests t-tests on the difference of the 
mean learning gains revealed that the learning gain in Study 2 was 
significantly higher than that in Study 1.  Table 1 shows the test 
scores by gender, which suggests that girls in this sample 
performed significantly better than boys, although there were no 
significant differences by age or grade. 

Figure 3: Pre-Post test average scores in Study #1 & Study #2  

Table 1: Student Test Outcomes by Gender 
  Mean (SE) p-value 
By Gender Male (n = 40) Female (n = 12)   

Pre-Test  29.9 (3.3) 38.4 (4.8) 0.20 
Post-Test 77.1 (3.2) 89.7 (2.5)  0.04* 

Note: p-values for the Pre-Test and Post-test come from a t-test 
of equality of means across samples with unequal variance. 
Given the non-normal distribution of the Post-test, the Mann-
Whitney (Wilcoxon) rank sum test was also used and the p-value 
in that test was 0.07 for Post-test scores by gender. 

 
Figure 5 shows student performance in the 6 questions containing 
22 sub-questions that were re-used from the 2012 Israel national 
exam. It compares student performance for the 54 participants in 
our two studies with that of the 4082 students in Israel [28]. We 
found the difference in performance on all questions not 
statistically significant except in Question 9 in which our students 
performed significantly better than the Israel students scoring an 
average of almost 70% as compared to their 57%. We discuss this 
in more detail in Section 4.1. The Israel study report broke down 
the assessment measures according to thinking skills based on a 
modified version of Bloom’s taxonomy as comprising 
Remembering & Understanding, Applying & Analyzing, and 



Evaluating & Creating. The figures for the 2012 Israel Exam were 
82%, 78% & 64% respectively for these three categories. Those 
corresponding figures for our students were 83%, 85% and 74%, 
however it is important to note that a fair comparison cannot be 
made as the calculations in the former were made based on the 
whole exam comprising 9 questions; and ours are based only on 
the 6 (out of those 9) questions that we used. 

 
Figure 4: Comparison of Student Performance in Study #1 & #2 

vs. 2012 Israel results (on 6 of 9 questions) 

Additionally questions in the Israeli study were categorized 
according to topics taught, classified as serial execution (8%), 
conditionals (30%), Forever/Forever-If (12%) and For Loops 
(50%). The numbers in parentheses represent the percentage of 
the exam grade that was associated with that topic. The Israeli 
students’ scores across the whole exam on the four topics was 
reported to be 87%, 85%, 89% & 64% respectively. We could not 
calculate corresponding figures for these as we were missing 
some questions, however the breakdown of our entire exam by 
topics taught is seen in Table 2 below. 

Table 2: Post-Test Scores Breakdown by CS Topics Taught 
    Mean (SD) 

 
Overall Score 80.6 (19.2) 

By CS Topic 
 

 
Vocabulary 72.9 (20.6) 

 
Serial Execution 94.1 (17.6) 

 
Conditionals 84.7 (19.6) 

 
Loops 75.7 (24.1) 

4.1 Discussion of Results  
Based on results shown above, our students seemed to learn well 
for both Study 1 and 2 iterations of the 6-week FACT module. 
Based on student performance on the post-test in Study 1, we 
altered some strategies in Study 2- devoting more teaching time to 
certain topics, and a few different examples and programming 
assignments. This clearly helped as the student performance in the 
post-test in Study 2 improved. 

Regarding the comparison of our students’ performance following 
FACT on the same questions given to the students in Israel in 
2012 following their national curriculum, it is worth noting the 
following distinctions in the research contexts. The Israel results 
were based on a sample of 4,082 7th grade students, while both of 
our research studies included both 7th and 8th grade students, 
comprising a total of 54 students. The Israel nationwide exam was 
given following a yearlong Introductory CS class. According to 
information provided by Zur Bargury to the lead author, the class 
was held for 2 hours a week for a school year, a total of 60 hours. 

The results shared here from our studies are from the post-test 
taken after roughly 24 hours over 6 weeks of learning with the 
FACT module. While we have demographic and other data, there 
is no such data available to us on the Israel students. In the Israel 
study, students taking this class were selected from within their 
schools as those “who excelled in their age group.” In our studies, 
students were in the elective class based on stated interest or a 
counselor placing them in this elective; it was not seen as a part of 
the core curriculum or connected to official testing. 

Despite these differences in the Israeli context from ours, most 
results were statistically no different. The only difference that 
warrants comment is that our students’ performance in both Study 
1 and Study 2 on Question 9 were significantly better than those 
of students in Israel. This was the only question that did not have 
multiple choice answers provided but required students to fill in 
10 blanks in a Scratch script and involved the highest level of 
thinking, “Evaluating and Creating” in Bloom’s taxonomy. Our 
students’ success on this question may be due to a curricular focus 
on deeper understanding of concepts as well as practice in tracing 
existing code and reading/writing pseudo-code. Not having more 
details on the curriculum used in Israel, we are hesitant to 
comment on what may have affected the result in their case. 

5. CONCLUSIONS & FUTURE WORK 
Although student results on the post-test are encouraging overall, 
we hope to get a more holistic view of student learning, especially 
for children who did not perform as well on the test. To this end 
we are currently coding student interviews and grading final 
projects from Study 2. Preliminary results suggest that 
decontextualized assessment measures requiring reading abilities 
to understand written questions may not favor the English 
Language Learners in the student population. The projects and 
interview shows evidence of understanding of computational 
concepts even among low performers in the post-test, in addition 
to the obvious increased confidence and engagement levels when 
describing their own projects in contrast to discussing a question 
from the post-test, where they appear to get confused about some 
aspects of questions that appear ambiguous to them. 
It is noteworthy that efforts to improve the instruction and Scratch 
assignments in Study 2 following Study 1 resulted in learning 
gains in Study 2 despite using an all-online version of FACT. We 
attribute the success of the FACT curriculum, especially on 
advanced questions like #9 of the Israel exam, to a good balance 
between explanation, demonstration of worked examples, use of 
pseudo-code, regular assessments that required children to trace 
(read) Scratch script and answer questions based on them, and 
several hands-on assignments in Scratch. However, future 
research is required to tease apart the productive conditions of the 
learning environment. Though unguided or minimally guided 
instructional approaches are popular among teachers employing 
easy-to-use environments like Scratch, we were guided by the 
argument that these approaches are less effective and less efficient 
than instructional approaches that place a strong emphasis on 
guidance of the student learning process [16]. A curriculum such 
as the one proposed in this research aims to help students see 
deeper structures in their computational artifacts and assess this 
learning via appropriate assessments.  

A salient finding from our reuse of questions from the Israel exam 
is that student performance seems to be remarkably similar 
despite the distinctions between our research contexts, and the 
curriculum, location, student population as well as sample size 
taking the Israel National Exam. Perhaps more interesting is that 
both efforts are being used in part to hone a CS curriculum. Given 



that two completely unrelated curricula taught across the world to 
two very disparate groups of students presented such similar 
results suggests that the ease or difficulty that students face in 
learning certain computational concepts transcends teaching 
methods and materials, and are perhaps a function of age and 
cognitive maturity more than anything else.  
A significant contribution of our research is the demonstration of 
the use of multiple forms of assessment in a structured 
introductory CS curriculum in a K-12 setting. Neither multiple-
choice questions nor open-ended projects alone tell the whole 
story of student understanding. It would be unwise to ignore 
learner agency, motivation, creative expression and design 
thinking that students bring to projects of their own choosing [2]. 
This is especially critical when one of the stated goals of 
introducing CS is to inspire children to pursue this discipline and 
broaden the CS pipeline. However, it would be equally imprudent 
to not include objective measures that can be scaled and assess 
students’ understanding of core computational concepts as well as 
associated skills such as debugging and code-tracing.  

Perhaps the most noteworthy aspect of this effort is the reuse of 
assessment ideas and instruments from prior and ongoing efforts 
in different parts of the world to build a cumulative knowledge 
base of a learning science for computational thinking. This is 
especially pertinent as our individual nations move concurrently 
but separately towards a shared goal of building a computationally 
literate generation of learners. Leveraging the efforts of others and 
testing curricular instruments in new settings helps validate ideas 
and move the field forward. 
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