
Designing for deeper learning in a blended computer science
course for middle school students

Shuchi Grovera,1*, Roy Peab and Stephen Cooperc

aGraduate School of Education, Stanford University, Stanford, CA, USA; bGraduate School
of Education/H-STAR, Stanford University, Stanford, CA, USA; cComputer Science
Department, Stanford University, Stanford, CA, USA

(Received 15 November 2014; accepted 16 January 2015)

The focus of this research was to create and test an introductory
computer science course for middle school. Titled “Foundations for
Advancing Computational Thinking” (FACT), the course aims to prepare
and motivate middle school learners for future engagement with algorith-
mic problem solving. FACT was also piloted as a seven-week course on
Stanford’s OpenEdX MOOC platform for blended in-class learning.
Unique aspects of FACT include balanced pedagogical designs that
address the cognitive, interpersonal, and intrapersonal aspects of “deeper
learning”; a focus on pedagogical strategies for mediating and assessing
for transfer from block-based to text-based programming; curricular
materials for remedying misperceptions of computing; and “systems of
assessments” (including formative and summative quizzes and tests,
directed as well as open-ended programming assignments, and a transfer
test) to get a comprehensive picture of students’ deeper computational
learning. Empirical investigations, accomplished over two iterations of a
design-based research effort with students (aged 11–14 years) in a public
school, sought to examine student understanding of algorithmic con-
structs, and how well students transferred this learning from Scratch to
text-based languages. Changes in student perceptions of computing as a
discipline were measured. Results and mixed-method analyses revealed
that students in both studies (1) achieved substantial learning gains in
algorithmic thinking skills, (2) were able to transfer their learning from
Scratch to a text-based programming context, and (3) achieved signifi-
cant growth toward a more mature understanding of computing as a
discipline. Factor analyses of prior computing experience, multivariate
regression analyses, and qualitative analyses of student projects and arti-
fact-based interviews were conducted to better understand the factors
affecting learning outcomes. Prior computing experiences (as measured
by a pretest) and math ability were found to be strong predictors of
learning outcomes.

*Corresponding author. Email: shuchi.grover@sri.com
1Present Affiliation: Center for Technology in Learning, SRI International, Menlo
Park, CA 94025, USA.

© 2015 Taylor & Francis

Computer Science Education, 2015
Vol. 25, No. 2, 199–237, http://dx.doi.org/10.1080/08993408.2015.1033142

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

mailto:shuchi.grover@sri.com
http://dx.doi.org/10.1080/08993408.2015.1033142

Keywords: computational thinking; computer science education; K-12
CS curriculum; middle school computer science; curriculum design;
pedagogical content knowledge; design-based research; deeper learning;
blended learning; transfer; preparation for future learning; perceptions of
computing

1. Introduction

Computational thinking (CT) skills are seen as key for all, not only com-
puter scientists (Wing, 2006, 2011). Although the needs of high school stu-
dents across the US are being prioritized through pilot courses such as
Exploring Computer Science (ECS) and AP CS Principles, there is growing
belief that experience with computing must start at an earlier age. Middle
school experiences are formative for cognitive and social development in
the K-12 schooling journey especially for future engagement with STEM
fields (Tai, Liu, Maltese, & Fan, 2006), and should make students amenable
to diverse future opportunities as part of their “possible selves” (Markus &
Nurius, 1986).

Nations have begun to act on the imperative for training young minds in
computing. The UK recently formulated a computing curriculum for all ele-
mentary and secondary school students following an ambitious policy char-
ter of the Royal Society (2012) calling for the expansion of computer
science (CS) education initiatives. There are also initiatives underway in
countries such as New Zealand (Bell, Andreae, & Robins, 2012) and
Denmark (Caspersen & Nowack, 2013). Israel is introducing computing in
earlier grades through a nationwide middle school curriculum to build the
workforce for the Israeli high-tech industry (Zur Bargury, 2012).

Introductory computing courses usually include programming, which is a
complex problem-solving activity novices find difficult (for example, du
Boulay, 1986; Pea & Kurland, 1984; Robins, Rountree, & Rountree, 2003).
Arguably, learners’ success in future engagement with computing will
depend on how well introductory curricula prepare them in both the cogni-
tive and affective dimensions of computational learning. On the cognitive
dimension, students’ ability to transfer learning to future computing contexts
depends on how deeply they learn foundational disciplinary concepts and
constructs. On the affective dimension, learners’ attitudes toward computing
draws on the interest and awareness such curricula foster among learners
regarding this discipline.

If the goal is to reach every student, computing education curricula must
enter the classroom in public schools across the US. Unfortunately, most of
the activity around computationally rich curricula in middle school has thus
far been disparate, mostly relegated to after school and informal settings
(Phillips, Cooper, & Stephenson, 2012). US middle schools also face a criti-
cal shortage of teachers to teach introductory computing. Making computing

200 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

courses available online may help accelerate scaling to wider audiences of
students and teachers. Although recent months have seen growth of CS cur-
ricula at online venues like Khan Academy (http://www.khanacademy.org/)
and Code.org, their success for development of deeper, transferable CT skills
is yet to be empirically validated, and so far they lack rigorous assessments.
The recent explosion of massive open online course – or MOOC – plat-
forms for higher education courses could serve this crucial need in K-12.
However, an online course for middle school students would have to be
consciously designed for engagement and active learning.

The broad goal of this research was to address the cognitive and affective
aspects of learning CS through a structured curriculum for middle school
with a well-defined sequence of instruction and activities, combined with
formative and summative assessments that also assess transfer of learning
from visual, block-based to text-based programming contexts. The curricu-
lum leveraged pedagogical ideas from the learning sciences and computing
education research about how children develop conceptual understanding in
general, and how they can best develop CT skills, specifically, foundational
ideas of algorithmic problem solving.

This paper describes the “design-based research” (Barab & Squire, 2004)
effort with data and results over two iterations of the use of a seven-week
course titled “Foundations for Advancing Computational Thinking” (FACT)
in a blended middle school classroom setting. The first iteration was largely
set in a face-to-face classroom context; the second took place in the context
of blended in-class learning involving an online version of FACT designed
and deployed on Stanford University’s OpenEdX MOOC platform. The fol-
lowing research questions were probed through empirical inquiry:

(1) What is the variation across learners in learning of algorithmic flow
of control (serial execution, looping constructs, and conditional logic)
through the FACT curriculum?

(2) Does the curriculum promote an understanding of algorithmic con-
cepts that goes deeper than tool-related syntax details as measured by
“preparation for future learning” (PFL) transfer assessments?

(3) What is the change in the perception of the discipline of CS among
learners as a result of the FACT curriculum?

The paper focuses on the design of the learning experience to introduce
students to computing and algorithmic thinking and has four parts. A survey
of relevant related work presents a backdrop to the research framework and
the rationale of the FACT curriculum design. A description of the research
methodology follows, including empirical studies, results, and related discus-
sions of findings in the two studies. The Methods section also provides
details of the curriculum and assessment pedagogy and design, including the
design of the online curriculum and blended classroom experience. The

Computer Science Education 201

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://www.khanacademy.org/

paper ends with a synthesis of the main findings of this research as well as
its implications and anticipated future directions.

2. Related work

For ease of organization, the literature review is presented under appropriate
subheadings. Although not included in this literature review due to space
constraints, this research benefits from a thorough background study of CT
and associated ideas of “computational literacy” (DiSessa, 2001) conducted
by the authors in Grover and Pea (2013).

2.1. Misperceptions of computing among K-12 students

It is particularly alarming that most young teens are completely unaware of
CS as a discipline and career choice. Furthermore, this lack of awareness is
often coupled with negative attitudes toward CS among students (Carter,
2006; Greening, 1998; Hewner & Guzdial, 2008; Hewner, 2013; Martin,
2004; Mitchell, Purchase, & Hamer, 2009; Yardi & Bruckman, 2007).
Martin (2004) claimed “CS has a fundamental image problem” and asserted
that students finishing high school have a difficult time seeing themselves as
computer scientists since they do not have a clear understanding of what CS
is and what a computer scientist does. Carter (2006) recommended fixing
“computer science’s image” by educating students on how computing is
really used in the real world – “for example, for special effects in movies,
to improve the quality of life for people with missing limbs, and for allow-
ing communication for people with speech impediments”.

Students with an incomplete view of CS are clearly ill equipped to make
informed educational choices, and it is not surprising that few students opt
to study CS in high school or beyond. Taub, Ben-Ari, and Armoni (2009)
surveyed and interviewed middle school students who had completed CS
Unplugged activities (Bell, Alexander, Freeman, & Grimley, 2009) over the
course of a semester. Their research questions examined students’ percep-
tions and attitudes toward CS and their intent in studying and working in
this field. The results were mixed and showed only some growth in stu-
dents’ perceptions of CS. Clearly, K-12 CS curricula need to consciously
address misperceptions of computing and make students aware of exemplary
societal uses of CS as a creative and engaging discipline with an impact in
almost all other domains.

2.2. Developing CT skills in middle school

Most contemporary efforts to introduce children to CT through program-
ming in K-12 are centered on tools and environments that boast a “low
floor, high ceiling” for ease of use by young programmers. Over the last

202 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

two decades, visual block-based programming environments such as Scratch,
Alice, Game Maker, Kodu, and Greenfoot have gained popularity, as have
Web-based simulation authoring tools such as Agentsheets and Agentcubes,
and tangible tools such as Arduino and robotics kits. Graphical program-
ming environments are relatively easy to use and allow early experiences to
focus on designing and creating, avoiding issues of programming syntax.

Repenning, Webb, and Ioannidou (2010) report on high engagement
among middle school children with the scalable game design curriculum
that teaches the use of “CT patterns” in the design of video games using
Agentsheets.

Denner, Werner, and Ortiz (2012) employed a three-stage “Use-Modify-
Create” progression (Lee et al., 2011) to help students engage with CT.
Students completed tutorials and worked through a series of self-paced
instructional exercises in Alice built to provide scaffolding and “challenges”
(Campe, Denner, & Werner, 2013). Students then designed and developed
their own games in Alice. Student learning was assessed through a Fairy
Assessment created in Alice that tested students on algorithmic thinking, and
how effectively they made use of abstraction and modeling (Werner, Denner,
Campe, & Kawamoto, 2012). This assessment was Alice-based, and grading
was subjective and time-consuming – a perennial challenge when assessing
student projects. The authors summarize their experience with game design
projects in Alice over several research projects by acknowledging that while
computer game programming (CGP) in environments such as Alice has
proven to be

a good strategy to attract underrepresented students to computing in middle
school and to engage them in programming concepts and systems thinking …
CGP does not automatically result in learning, and without some intention on
the part of the teacher, it will not result in them learning specific programming
concepts. (Campe et al., 2013)

Other research with middle school age children has been conducted using
Scratch (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). “Scratchers” are
encouraged to become members of the thriving million-strong Scratch
community and incentivized to “remix” projects. The success of the open-
ended nature of Scratch as a motivating programming environment for both
girls and boys is noteworthy (Monroy-Hernández & Resnick, 2008), and the
idea of “computational participation” is compelling as a social motivator for
learning computing, especially for younger learners. Empirical research,
however, suggests that levels of participation are not always suggestive of
depth of engagement with advanced computing concepts (Fields, Giang, &
Kafai, 2014), and tinkering and remixing as approaches to engaging with
CT have resulted in mixed success in formal assessments of CT develop-
ment. Brennan and Resnick (2012) suggested that although student projects

Computer Science Education 203

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

pointed to apparent fluency as evidenced by the existence of computational
concepts in the code, probing deeper through interviews revealed that stu-
dents’ descriptions sometimes demonstrated significant conceptual gaps, as
they could not explain how their code worked. These studies echo research
conducted three decades ago involving children learning LOGO program-
ming. Kurland and Pea (1985) reported that students aged 11 and 12 years
who had logged more than 50 h of LOGO programming experience under
pure discovery conditions were able to write and interpret short, simple pro-
grams but had difficulty on programs involving fundamental programming
concepts. In interviews, students revealed many incorrect conceptions of
how programs work.

Lewis (2013) provides a structured introduction to Scratch for middle
school; however, few curricula encompass a broader introduction to CS as a
discipline, and studies rarely include investigations of deeper learning or
how well CT learning transfers beyond introductory programming settings
to future computing contexts.

3. Research framework

“Deeper learning” (Pellegrino & Hilton, 2013) resonates with our under-
standing of learning environments as described in the National Academy of
Sciences consensus report, How People Learn (Bransford, Brown, &
Cocking, 2000). Deeper learning is increasingly seen as an imperative for
helping students develop robust, transferable knowledge and skills for the
twenty-first century. It demands that students master core academic content,
engage in problem solving, work collaboratively, communicate effectively,
and learn how to learn (e.g. self-directed learning). Pellegrino and Hilton
(2013) outline three broad domains of competence for deeper learning:

• Cognitive domain, which includes thinking, reasoning, and disciplinary
skills;

• Intrapersonal domain, which involves self-management, including the
ability to regulate one’s behavior and emotions to reach goals; and

• Interpersonal domain, which involves expressing information to others,
and interpreting information from others.

This approach underscores the need for learners to be able to transfer
learning to future learning contexts and describes “deeper learning” as ‘the
process through which a person becomes capable of taking what was
learned in one situation and applying it to new situations – in other words,
learning for “transfer”’.

The framework guiding this research recognizes the interconnectedness
of pedagogy, disciplinary content, and normative outcomes of deeper
learning.

204 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

3.1. Teaching programming requires a pedagogical approach

Learning to program and construct computational solutions is hard (du
Boulay, 1986; Guzdial, 2004; Myers, Ko, & Burnett, 2006; Pea & Kurland,
1984; Reynolds & Caperton, 2011; Robins et al., 2003). By extension,
teaching programming is not easy either (Vihavainen, Paksula, &
Luukkainen, 2011), as it requires teachers to develop what Shulman (1986)
influentially calls “pedagogical content knowledge,” a second kind of
content knowledge (beyond domain knowledge itself), the

pedagogical knowledge, which goes beyond knowledge of subject matter per
se to the dimension of subject matter knowledge for teaching. I still speak of
content knowledge here, but of the particular form of content knowledge that
embodies the aspects of content most germane to its teachability. Within the
category of pedagogical content knowledge I include, for the most regularly
taught topics in one’s subject area, the most useful forms of representation of
those ideas, the most powerful analogies, illustrations, examples, explanations,
and demonstrations – in a word, the ways of representing and formulating the
subject that make it comprehensible to others. (p. 9)

Research suggests that learners often struggle with algorithmic concepts,
especially if they are left to tinker in programming environments, or if they
are not taught these concepts using appropriately supportive pedagogies.
Seymour Papert’s pioneering efforts in the 1980s concerning children, pro-
gramming and the development of procedural thinking skills through LOGO
programming (Papert, 1980) inspired a large body of such research studies.
This previous literature on children and programming (du Boulay, 1986; Pea
& Kurland, 1984; Pea, Soloway, & Spohrer, 1987; Perkins & Simmons,
1988; among others) revealed the types of problems children experience on
their way to understanding computing and called for a need to study the
pedagogy of programming to help children build better cognitive models of
foundational concepts of CS. NRC (2011) argued for an application of
research in the sciences of learning to design grade- and age-appropriate cur-
ricula for CT to maximize its impact on and significance for K-12 students.
A curriculum that scaffolds learning experiences with basic algorithmic
notions of flow of control in computational problem solving at a younger
age is needed to provide that strong foundation for better success in future
programming experiences.

There is as yet little consensus what these scaffolded learning experi-
ences look like. Specifically, how can we help all learners acquire skills and
knowledge of the basics of computational constructs and how these con-
structs come together in creating a computational solution? How should stu-
dents be taught to program in a way that they learn the processes of
problem-solving inherent to programming? Generally speaking, evidence in
past research (e.g. Brown & Campione, 1994; Mayer, 2004; Schwartz &
Bransford, 1998) supports the belief that some combination of guided

Computer Science Education 205

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

discovery and instruction would be more successful in fostering deep learn-
ing for transfer in such an environment than pure discovery and “tinkering”.
The pedagogical strategies adopted in this research are described in the
Section 4.1.2 (FACT pedagogy).

3.2. Rigor in assessment of CT skills

Despite the many efforts aimed at CT assessment (e.g. Basawapatna, Koh,
Repenning, Webb, & Marshall, 2011; Fields, Searle, Kafai, & Min, 2012;
Meerbaum-Salant, Armoni, & Ben-Ari, 2010; Werner et al., 2012), assessing
the learning of computational concepts and constructs in these programming
environments remains a challenge. To our knowledge, no studies at the
K-12 level have explicitly investigated the transfer of CT skills to future
learning contexts. New approaches to fostering and assessing transfer such
as PFL (Schwartz, Bransford, & Sears, 2005) show promise in the context
of science and mathematics learning at the secondary level (Dede, 2009;
Schwartz & Martin, 2004). Interventions in CS education could similarly
benefit from these approaches.

Although open-ended projects afford students choices in their learning,
assessing such projects is subjective and time-consuming, especially with a
large student population, and could also provide an inaccurate sense of
students’ computational competencies (Brennan & Resnick, 2012). “Artifact-
based interviews” can help provide a more accurate picture of student under-
standing of their programming projects (Barron, Martin, Roberts, Osipovich,
& Ross, 2002), although these, too, are time-consuming. There is thus a
need for more objective formative assessment instruments that can illumi-
nate student understanding of specific computing concepts. Moskal, Lurie,
and Cooper (2004) developed a multiple-choice instrument for measuring
learning of Alice programming concepts, but it has not been used to
measure student learning in K-12 settings.

SRI International (2013) is creating systematic frameworks for assessing
CT focusing on assessing CS concepts, inquiry skills, communication and
collaboration skills as key elements of CT practices. Their principled assess-
ments of CT are being piloted in high school ECS classrooms (Rutstein,
Snow, & Bienkowski, 2014).

Recently developed introductory computing curricula at the elementary
and middle school levels outside the US (Lewis & Shah, 2012; Scott, 2013;
Zur Bargury, Pârv, & Lanzberg, 2013) provide useful ideas for multiple-
choice assessments that make it easier to measure learning, especially in
large-scale settings.

Barron and Darling-Hammond (2008) contend that robust assessments
for meaningful learning must include intellectually ambitious performance
assessments that require application of desired concepts and skills in disci-
plined ways; rubrics that define what constitutes good work; and frequent

206 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

formative assessments to guide feedback to students and teachers. Conley
and Darling-Hammond (2013) assert that assessments for deeper learning
must measure higher order cognitive skills, and more importantly, skills that
support transferable learning, and abilities such as collaboration, complex
problem solving, planning, reflection, and communication of these ideas
through use of appropriate vocabulary of the domain in addition to presenta-
tion of projects to a broader audience. These assessments are in addition to
those that measure key subject matter concepts specifically. This assertion
implies the need for multiple measures or “systems of assessments” that are
complementary, encourage and reflect deeper learning, and contribute to a
comprehensive picture of student learning. No prior efforts, to our knowl-
edge, include such comprehensive assessments.

4. Research methodology

This design-based research effort involved two iterations that studied the use
of a seven-week introductory CS course titled FACT in a public middle
school classroom setting. The first iteration was in a traditional face-to-face
classroom setting, whereas the second iteration involved investigations on a
blended model of learning using an online version of FACT designed and
created on the OpenEdX MOOC platform. The research encompassed three
endeavors: (a) iterative design of curriculum and assessments; (b) engineer-
ing a blended learning experience using an online version of FACT; and (c)
empirical investigations around FACT use in a classroom to answer the
research questions outlined earlier.

4.1. Curriculum design: content, pedagogy and assessments

4.1.1. FACT content

The seven-week FACT curriculum (Table 1) was inspired by the 36-week
long ECS high school curriculum (Goode et al., 2013) and included topics
that were considered by the authors as foundational and engaging for a
shorter course for middle school. While CT encompasses several elements
(Grover & Pea, 2013), FACT focused largely on algorithmic problem
solving in addition to broader notions of computing as a discipline. The

Table 1. FACT curriculum unit-level breakdown.

Unit 1 Computing is everywhere!/what is CS?
Unit 2 What are algorithms and programs? Computational solution as a precise

sequence of instructions
Unit 3 Iterative/repetitive flow of control in a program: loops and iteration
Unit 4 Representation of information (data and variables)
Unit 5 Boolean logic and advanced loops
Unit 6 Selective flow of control in a program: conditional thinking

Final project (student’s own choice; could be done individually or in pairs)

Computer Science Education 207

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

curriculum design effort was guided by goals for deeper learning, attending
to the development of cognitive abilities through mastery of disciplinary
learning for transfer, in addition to interpersonal and intrapersonal abilities.

FACT expressly engaged students’ narrow perceptions of CS to help
them see computing in a new light. This was done with a view to “expan-
sively frame” (Engle, Lam, Meyer, & Nix, 2012) the curriculum so learners
would see a broader relevance of their learning. To give students a sense for
exemplary societal uses of CS, Unit 1 “Computing is Everywhere!” was
designed so students would see examples of computing being used for var-
ied purposes and in diverse fields. Publicly available videos were cre-
ated/found. These included videos such as “M.I.T. Computer Program
Reveals Invisible Motion in Video” and “Untangling the hairy physics of
Rapunzel” that exemplified engaging innovations in computing and demon-
strated the use of computing in contexts novel for most middle school stu-
dents. Sebastian Thrun’s TED talk on Google’s driverless car was an
example of a project to tackle the problem of fatalities in automobile acci-
dents. The videos for this unit are publicly available (http://bit.ly/CS-rocks;
http://stanford.edu/~shuchig/Computing-vignettes.html).

FACT also devoted attention to the following additional curricular goals:

• Gaining a familiarity with CS vocabulary to communicate computa-
tional ideas more effectively.

• Learning core practices of programming in the context of the introduc-
tory content described above, including
o Task decomposition and construction of a programmatic solution.
o Using abstraction.
o Iterative development of programs.
o Debugging and testing of programs.

• Interpersonal and intrapersonal aspects of computational learning:
o Working with others.
o Learning from and supporting one another’s learning.
o Showcasing and sharing one’s work with the classroom community.
o Reflection on, and revision of, projects.

Table 2 lists the FACT curricular topics by “main ideas”. These ideas
were used to outline more detailed learning goals, in accordance with the
Understanding by Design framework (Wiggins & McTighe, 2005).

4.1.2. FACT pedagogy

The pedagogical design exercise hinged on the belief that no single peda-
gogical approach would likely accommodate the diverse goals of deeper
learning. A minimally guided discovery approach often makes for high lear-
ner engagement and agency but misses out on helping students develop

208 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://bit.ly/CS-rocks
http://stanford.edu/~shuchig/Computing-vignettes.html

Table 2. FACT content goals by main ideas and learning goals.

Main idea #1:
computing is
everywhere!

• Students will appreciate the pervasiveness of computing in
our lives today

• Students will see computing as a discipline with wide
applicability in many subjects and fields of human endeavor

Main idea #2:
what is computer
science?

• Students will learn that computer science is a problem-
solving discipline with applications in the real world, and
computer scientists are creative problem solvers who work
on problems to make our lives better and easier using
computation

Main idea(s) #3:
computational
solutions:
algorithms;
programs;
pseudo-code;
deeper computing
concepts vs.
superficial
syntactical details

• Students will learn what an algorithm is, and be able to write
out a detailed sequence of instructions to perform a task

• Students will learn that algorithms usually contain three
essential elements: serially executed instructions, repeated
actions, and decision or selection of alternate courses of
action (based on some condition)

• Students will learn the difference between a program and an
algorithm

• Students will learn different ways to represent an algorithmic
solution

• Students will describe an algorithm as pseudo-code in “semi-
English” as an in-between representation between algorithms
and programs

• Students will understand that the same algorithm or pseudo-
code can subsequently be coded in different programming
languages

• Students will understand that though syntactical details of
programming languages differ, the deeper concepts of
computation and algorithmic flow of control is the same

Main idea(s) #4:
algorithmic flow
of control
(sequence, serial
execution, loops,
conditions)

• Students will learn how programs are executed sequentially
• Students will learn how simple loops work
• Students will learn algorithmic flow of control – how

commands are executed in sequence even when there are
loops, except that the commands within a loop are repeated
(in sequence) and then the program proceeds to the
commands after the loop

• Students will learn how to create different pathways in
programs using conditional statements

Main idea #5:
variables

• Students will learn what data are, and how it is used in a
program

• Students will learn how variables are an abstraction or
representation of data in the program

• Students will learn how to make code work for a certain set
of valid inputs given by the user

• Students will learn how variables are created, used, assigned
values, and updated

• Students will learn how variable values change within loops.
• Student will learn what initialization is and why it is

important

(Continued)

Computer Science Education 209

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

robust mental models of concepts (Mayer, 2004), with the consequence that
deeper, transferable understanding of core disciplinary ideas may suffer. Simi-
larly, a pure “instructionist” (Papert, 1991) approach that does not engage stu-
dents’ prior knowledge or experiences does not lend weight to learner agency,
thus failing on many dimensions valued in learner-centered environments. It
appears then that instead of adopting a monocultural approach to pedagogy, a
course that aims for a balanced set of curricular goals for deeper learning
would benefit from espousing a balanced approach to curriculum, pedagogy,
and assessment design, too. The goal for FACT curriculum design and
research, therefore, was to tackle this effort as a design balance problem and
engineer a balanced curriculum with a balanced pedagogy and assessments
drawn from diverse influences to guide this effort.

FACT pedagogy borrowed from inquiry-based approaches of ECS –
Engage, Explore, Explain, Elaborate and Evaluate, pedagogical ideas of
scaffolding (Pea, 2004) and cognitive apprenticeship (Brown, Collins, &
Newman, 1989). It involved working (and thinking aloud) through examples
to model solutions to computational problems in a manner that revealed the
underlying structure of the problem, and the process of composing the solu-
tion in pseudo-code or in Scratch, the programming environment used in
FACT. Code reading and tracing were modeled throughout. Often students
were expected to think about and discuss programming scenarios or prob-
lems before the solution was modeled. Academic language and computing
vocabulary were used during this scaffolding process.

Learners were encouraged to use pseudo-code as a step before coding.
This paraphrasing of problems and solutions before programming has been

Main idea #6:
boolean logic

• Students will learn the idea of controlling loops and
conditionals using Boolean tests

• Students will learn how AND, OR, and NOT operators work
in computing contexts

Main idea #7:
problem
decomposition

• Students will learn the importance of planning before
programming

• Students will learn the need for breaking down problems into
smaller manageable tasks

• Students will learn the usefulness of modular code and how
abstraction helps with modularity of code

Main idea #8:
abstraction

• Students will learn computational solutions are abstractions;
and that these abstractions can be represented in different
ways

• Students will learn that variables used in programs are
abstractions of data in the real world

• Students will be given a brief overview of functional
abstraction and its use in making computational solutions
modular and manageable

Table 2. (Continued).

210 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

found to be beneficial for algorithmic thinking in general (Bornat, 1987;
Fidge & Teague, 2009; Fincher, 1999; Mayer, 1989). Experiences with
pseudo-code are instrumental in building a deeper understanding of comput-
ing constructs. Seeing algorithmic solutions expressed in various formats
and using synonymous/analogical terms for the same concept (for example,
REPEAT, WHILE, and FOR, to express the idea of loops and repetition),
helps learners go beyond surface features of the syntax and programming
language to see the deeper structure of how sequences, loops, and condi-
tionals, for example, characterize most solutions expressed in any imperative
language. This design draws on prior cognitive science studies using analo-
gous representations in learning for understanding deeper structures in prob-
lem-solving situations (Gentner, Loewenstein, & Thompson, 2003;
Schwartz, Chase, Oppezzo, & Chin, 2011). It is contended that guiding stu-
dents to draw analogies between different formalisms can foster deep and
abstract fundamental concepts of a domain. Dann, Cosgrove, Slater, Culyba,
and Cooper (2012) and Touretzky, Marghitu, Ludi, Bernstein, and Ni (2013)
have adopted this approach for introductory computing contexts. Building
deeper understandings is part of mediating transfer and “PFL” – one of the
central learning goals of FACT. Finally, FACT emphasized “learning by
doing” through a mix of directed assignments and open-ended projects
(Barron & Darling-Hammond, 2008) in Scratch, which also served as
assessments.

4.1.3. FACT’s systems of assessments

Well-designed multiple-choice assessments can be used to further learners’
understanding (Glass & Sinha, 2013) and to provide learners with feedback
and explanations rather than simply testing (Black & William, 1998). Low-
stakes, high-frequency quizzes throughout FACT tested students’ understand-
ing of specific CS concepts and constructs, and provided learners with
immediate feedback on their understanding. Inspired by the multiple-choice
assessments mentioned earlier, quizzes often involved small snippets of
Scratch or pseudo-code on which questions were based (Table 3). These
assessments were designed to help learners develop familiarity with code
tracing – the ability to read/understand code (Bornat, 1987; Lister, Fidge, &
Teague, 2009; Lopez, Whalley, Robbins, & Lister, 2008). Inspired by Parson’s
puzzles (Denny, Luxton-Reilly, & Simon, 2008; Parsons & Haden, 2006),
some quiz questions also involved presenting jumbled blocks in Scratch
required for a program and having students snap them in correct order.

FACT placed a heavy emphasis on “learning by doing” involving pro-
gramming in Scratch. In addition to open-ended time to dabble in Scratch,
there were specific assignments with attendant rubrics that built on the con-
cepts taught (Table 4). Rubrics included items for creativity, encouraging
students to add their own distinctive elements.

Computer Science Education 211

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Table 3. Sample quiz questions used in formative assessments.
Fill in the blanks below:

What is the value of x at the end of the

script
12

-1

:

What is the value of y at the end of the

script:

x and y are variables. Consider
the following code snippet:

x = 5; y = 7;

IF (x > 4) AND (y < 6)

{

<some action>

}

Will <some action> within the IF
condition above be executed?

In the code below, how may times
will the sound 'La' be played?

Table 4. Sample structured and open-ended Scratch programming assignments in FACT.

Programming assignments
(Scratch/pseudo-code)

Algorithmic/CT
concepts/constructs

Share a recipe Sequence of instructions – serial execution;
repetition; selection

(Scratch) make a life cycle of choice to use
in a 6th grade science class

Serial execution

(Scratch) draw a spirograph from a
polygon of choice

Simple nested loop + creative computing

(Scratch) create a simple animation Forever loop
(Scratch) generic polygon maker Variables; user input
Look inside scratch code and explain the
text version of code

Algorithms in different forms (analogous
representations for deeper learning)

(Scratch) draw a “Squiral” Loops, variables, creative computing
Open-ended project (in pairs): create a
game using “Repeat Until”

Loops ending with boolean condition

(Scratch) maze game Conditionals; event handlers
(Scratch) guess my number game Loops, variables, conditionals, Boolean logic
(Scratch) final, open-ended project of
choice

All CT topics taught in FACT

212 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Summative assessments involved a final posttest online that included
multiple-choice and open-ended questions to assess learners’ CT ability
through questions that required code tracing and/or debugging (Table 5).
They also included six questions from the 2012 Israel National Exam (Zur
Bargury et al., 2013). A final project of learner’s choosing to be done with
a partner was also included as part of summative assessments. Aligned with
the desired social and participatory aspects of learning environments, the
final projects were presented during a whole-class “Expo”, and showcased
in an online studio of games on the Scratch website so classmates could
play with, and provide feedback on, their peers’ games. The different tasks
involved creating the project, testing it, demonstrating it to the entire class,
documenting and writing reflections on it, and finally, playing with each
others’ games in the online studio. These activities afforded learners the
opportunity to problem solve, collaborate, plan, communicate, present, and
reflect on their work in a document adapted from the Starting from Scratch
curriculum (Scott, 2013). Inspired by past research (Barron et al., 2002),
“artifact-based interviews” explaining their Scratch projects were conducted.

Another unique aspect of FACT was the transfer or PFL test that was
specially designed and administered after the end of the course to assess
how well students were able to transfer their computational understanding
built in the block-based Scratch programming environment to questions in
Pascal/Java-like code borrowed from past AP exams.

Lastly, since perspectives and practices of the discipline are considered
essential ingredients of a CS curriculum, affective aspects such as students’
growth in their understanding of computing as a discipline and changes in
their attendant attitudes toward CS were also assessed through pre- and post-
responses to the free-response question – “What do computer scientists do?”

Table 5. Samples questions created for the CT summative test.

When the code above is executed, what is value of
'THE-Number' at the end of the script for the
following inputs after ‘counter’ is set to 3-

This code below does not work. Can you figure out
why? [Note: This program is executed on a stage
which has red bricks]

Computer Science Education 213

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

4.2. Participants and procedures

Empirical studies were conducted in a public middle school classroom in
Northern California. Like most middle schools in the US, it caters to stu-
dents (aged ~11–14) in grades 6, 7, and 8. Two iterations (henceforth
referred to as “Study1” and “Study2”) were conducted with two different
cohorts in the “Computers” elective mixed-age class (with 7th and 8th grade
students) that met four days a week for 55 min periods (Table 6).

In Study1, the course was taught face-to-face by the lead researcher and
author. One unit (out of the six units) was piloted on the online MOOC plat-
form with face-to-face lessons replaced by video ones and interspersed with
automated quizzes and other activities to be done individually or collabora-
tively (usually in pairs). Extensive feedback was sought from learners on
their experiences with the online unit as a precursor to creating online
materials for the entire course for Study2.

Study2 was conducted in the same classroom with a new cohort and
used an online version of FACT on OpenEdX with roughly 60 videos
(1–5 min in length), ten quizzes that were interspersed through the course,
and learning sequences for blended learning comprising a mix of activities
to be done individually or collaboratively. Several refinements were also
made to the curriculum based on experiences, and teacher and student feedback
in Study1. The improvements to Study1 incorporated in the blended version of
FACT as part of attempts to refine the curriculum are detailed in Table A1 in
the Appendix 1. The classroom teacher, without a background in CS or pro-
gramming, was present in the classroom at all times assisting with classroom
management and “learning right alongside the students” during both studies.

4.2.1. Designing the blended classroom experience in Study2

The affordances of the OpenEdX platform were leveraged to design a
“learning sequence” for each day. Each week’s materials were divided into
four parts that roughly mapped to the four days’ worth of work (Figure A1).
To leverage the social affordances of the classroom in this blended setting,
and to encourage active learning, the learning sequence for each day
(Figure 1) was planned to include a balanced mix of individual learning,
activities that may/may not involve a partner, active learning by doing,
working on quizzes (Figure A2 shows one such example), responding to

Table 6. Student samples in Study1 and Study2.

Count by
Gender Count by Grade

Count in Sp.
Programs

Study Mean age Male Female Grade 7 Grade 8 ELL Special Ed.

1 12.9 21 5 15 11 4 2
2 12.3 20 8 16 12 3 1

214 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

thought questions on the discussion board, and working on programming
projects with others or simply helping others on theirs.

The modular nature of the OpenEdX platform design allowed various
types of “elements” to be added to a course page. This platform feature
aided the use of contextual discussion prompts below instructional videos,
or a Scratch window “iframe”1 (http://scratch.mit.edu) right below the video
so students could try out the ideas discussed in the video. Qualtrics surveys
were similarly “iframe”-d to obtain student feedback and responses to open-
ended “thought questions” which students completed at the end of a video
lecture. In Figure 1, different shades of gray depict the various types of
learning activity. From lightest to darkest are videos, videos with activities
below them, thought questions, Scratch assignments, quizzes, and lastly,
extra (optional) assignments.

4.3. Data measures

The main and additional data measures (Table 7) included

• Pre- and posttests of “computational knowledge” (using code snippets
with questions).

Figure 1. Learning sequences planned for the four days of Week 2 on OpenEdX FACT.

Computer Science Education 215

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://scratch.mit.edu

• Prior computing experience pre-course survey; pre- and post-surveys to
measure CS interest and attitudes, and demographic information includ-
ing age, gender, and academic placement.

• PFL test to assess transfer to text-based programming.
• CS Perceptions survey including pre-and post- response to: “What do
computer scientists do?” Comparative data were also gathered from
college students.

Additional data measures in Study2 included (1) Automated quizzes on
OpenEdX and (2) Final projects and individual artifact-based interviews
about the project.

5. Analysis and results

In order to answer the three research questions, data were analyzed sepa-
rately for each study; however, factor analyses on prior experience variables
and multivariate regressions to determine which variables predicted outcome
measures of interest were conducted on the combined sample from the two
studies. The “perceptions of computing” responses were analyzed using a
mix of qualitative coding and quantitative methods.

A comparative analysis was also conducted using the six questions of
the posttest that were employed in the National CS Exam administered to
about 4000 middle school students in Israel (Zur Bargury et al., 2013).

5.1. Research question #1: learning of algorithmic constructs

The effect size (Cohen’s d) as measured by pretest and posttest of computa-
tional learning was roughly 2.4 in both studies, and all learners in both stud-
ies, regardless of pretest performance, showed significant gains from pre- to
posttest as measured by matched pairs t-tests. The average learning gain for
students in Study2 was statistically higher (as measured by t-tests) than for
those in Study1 (Table 8).

Table 7. Main instruments for capturing relevant data measures.

Instrument
Pre-
intervention

Post-
intervention Source(s)

Computational knowledge
test

✔ ✔ Several questions from Ericson
and McKlin (2012); Meerbaum-
Salant et al. (2010); Zur Bargury
et al. (2013)

PFL test ✔ Designed using AP CS questions
(Inspired by Schwartz and Martin
(2004))

Prior experience survey
(programming experience
and technology fluency)

✔ Adapted from Barron (2004)

CS perceptions survey ✔ ✔ Ericson and McKlin (2012)

216 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

On CT constructs taught, students found serial execution easiest followed
by conditionals; loops were the hardest for students to grasp (Table 9). This
was perhaps because most of the questions on loops also involved variable
manipulation – a concept which students found difficult to learn in both
studies.

5.2. Research question #2: PFL transfer test

On the PFL test, although students scored an average of about 65% (Table 10),
there was evidence that students were generally able to understand
algorithmic flow of control in snippets of code written in text-based program-
ming languages. The syntax for the (Pascal and Java) programming languages
was explained and provided to the students before they attempted the ques-
tions. The two researchers – the lead author and a doctoral student in educa-
tion with knowledge of programming, scored the PFL test. Inter-rater
reliability (Cohen’s Kappa) for our independent grading was 82.1%. Table A2
provides details on the PFL test and scoring.

Table 8. Comparison of CT test scores (out of 100) between Study1 and Study2.

Study1 Study2

N Mean (SD) N Mean (SD) t p < |t| z p < |z|

Pretest 24 36.33 (18.19) 28 28.06 (21.18) 1.5 0.14 1.76 0.08
Posttest 26 78.58 (17.08) 28 81.60 (21.24) −0.58 0.56 −1.26 0.21
Learning gain 24 43.08 (12.17) 28 53.07 (18.34) −2.34 0.02* −2.46 0.01*

Notes: Shapiro–Wilk tests for normality revealed that although the pretest score had a normal distribu-
tion, the posttest score did not. Hence, the non-parametric Mann–Whitney (Wilcoxon) rank-sum test
was also conducted to test the difference between the pretest and posttest.
*p < 0.05.

Table 9. Posttest scores by CT topics for Study1 and Study2.

Study1 Study2
Variable Mean (SD) Mean (SD) t-Stat p z-Score p

Overall 78.6 (17.1) 81.6 (21.2) −0.6 0.56 −1.3 0.21
By CS topic
Serial execution 97.4 (13.1) 91.1 (20.7) 1.4 0.18 1.6 0.12
Conditionals 84.5 (19.0) 84.9 (20.5) −0.1 0.94 −0.4 0.72
Loops 74.1 (21.9) 77.2 (26.3) −0.5 0.64 −1.1 0.29

Table 10. Comparison of PFL test scores (out of 100) for Study1 and Study2.

Study1 Study2

N Mean (SD) N Mean (SD) t p < |t| z p < |z|

PFL test 25 63.37 (28.86) 27 65.07 (26.47) −0.22 0.82 −0.08 0.93

Note: p-values for the PFL test come from a t-test of equality of means across samples with unequal
variance.

Computer Science Education 217

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Some errors were the result of badly worded questions. For example, in
the question, “How many numbers will be processed by the program
below?” (Question #4, Table A2), some students counted the number of
variables that the code was using rather than the count of numbers processed
by the loop. Several were common “off-by-1” loop errors. Students strug-
gled on the question with the FOR loop. Prior research suggests that FOR
loops are problematic for older novice programmers too (Robins et al.,
2003) due to the complex “behind-the-scenes” action involved with incre-
menting the loop variable. It is therefore not surprising that fewer than 50%
of the students tackled that question correctly. It is also noteworthy that
most of the questions on the PFL test involved loops and variables – topics
students had the most difficulty with in the computational learning posttest.
Prior literature contends that skills mastery in the original context is essen-
tial for transfer (Kurland, Pea, Clement, & Mawby, 1986).

5.3. Research question #3: perceptions of computing

Responses to the “perceptions of computing” question were analyzed
through quantitative analysis of qualitative data coded by two human coders
(Cohen’s Kappa measure of inter-rater reliability was 79.1%).2 The frequen-
cies of occurrences of the main coding categories (as a percentage of total
occurrences across all codes) in pre- and post-responses are presented in
Figure 2. A comparative data-set was gathered by asking the same question

Figure 2. “What do computer scientists do?”– College students’ responses (N = 168) vs.
pre- and post-responses from Study1 and Study2 (combined).

218 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

of 168 undergraduate students in a major university in the same geographi-
cal area who had recently completed an introductory computer science
(CS1) course that introduced students to Java and software engineering
principles including object-oriented design, decomposition, encapsulation,
abstraction, and testing. Figure 2 (which also shows this comparison data
with college students) reveals a significant shift from naïve “computer-
centric” notions of computer scientists (“make/fix/study computer”) to a
more sophisticated understanding of CS as a problem-solving discipline that
uses the computer as a tool to solve real-world problems in many diverse
fields.

5.4. Other results

Additional findings revealed in data analyses that cannot presently be further
discussed:

• The mean quiz score across the 10 automated quizzes for the 28 stu-
dents in Study2 was 73.14 (SD = 12.68). These scores were signifi-
cantly positively correlated with posttest performance. Data on
automated quizzes from Study2 aggregated by the OpenEdX platform
revealed that students found variables hard to grasp.

• The comparative analysis with the results from the Israel national exam
(Zur Bargury et al., 2013) revealed that the only significant difference
was on one question in which our students achieved a higher score
(Figure A3).

• Some gender differences were observed with girls performing better
than boys, and on average, logging into the online course after school
a significantly greater number of times than boys (as measured by t-
tests); however, the small number of females in the sample precluded
the drawing of deeper conclusions.

• Regression analyses revealed math performance was a positively corre-
lated predictor for performance in the pretest as well as the posttest
(even when controlling for the pretest). This may also have been due
to the fact that some questions required knowledge and use of math.

• The curriculum helped all students irrespective of prior experience as
measured by the self-report survey. Prior programming experience as
measured by the pretest was found to positively predict performance
on both the posttest as well as the PFL test. Regressing posttest perfor-
mance on prior experience factors (that resulted from factor analyses
on prior experience survey data) revealed that among students who did
not have prior programming experience, those with experience in
media creation generally did better than those that did not, and those
that engaged only in online gaming and video watching (to the exclu-
sion of programming or media creation activities), did worse.

Computer Science Education 219

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

5.5. Qualitative analysis

Although the research design relied mainly on quantitative pre- and post-
analyses for measuring growth of student learning, regression analyses sug-
gested that the text-heavy nature of the posttest and PFL test appeared to
disadvantage English Language Learners (ELL). Consequently, a qualitative
analysis of final projects and interviews was conducted for four students
who scored in the lowest quartile in the posttest.

5.5.1 Student interviews

About a month after the final projects had ended, all students in Study2
were interviewed individually. These interviews lasted between 12 and
17 min. The main goal was to have each student explain his or her final pro-
ject and its inner workings, and attempt Question 9 employed from Israeli
nationwide exam (Figure 3) by talking aloud through the solution. Most of
the lower-performing students had trouble with some subparts of that ques-
tion, and it was our aim to understand through the interview process what
aspect(s) of the question caused them difficulty. This part of the interview
was an attempt to better understand the broader goals and designs for
assessments with a view to future improvements in assessment design.

Figure 3. Question 9 from 2012 Israeli nationwide used in the posttest and interviews.

220 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

The interviews were guided by the following broad questions that were
posed to each student (although not always in the exact same sequence):

• How did you decide on your project?
• What does it do? How did you do it? (Student controls the mouse
while talking).

• What was it like working on this project?
• Overall how did you feel about this course?
• How does it feel to now know more about CS?
• Thinking back to on the course, what was the hardest part?
• Lastly, bring up the posttest question (Israel Exam Question 9 as pre-
sented in Figure 3) and have the student work through the problem on
the screen.

The interviews were conducted in a small video recording anteroom that
was attached to the computer laboratory in which the Computers class met.
The interview was recorded using Camtasia software, which allows for
screen-capture in addition to video capture via webcam, and audio through
the built-in laptop microphone. Although all the students in the class were
interviewed (barring those for whom parental consent to capture audio/video
recordings was not secured), interviews were transcribed and analyzed only
for the four students featured in this qualitative analysis.

The interviews were transcribed by another doctoral education researcher,
who with the lead author independently annotated the interviews with the
four students, Kevin, Isaac, Alex, and Lucas (pseudonyms) for evidence of
understanding of the project, areas the learner found challenging, scaffolding
which the learner needed to figure things out in their project code, and
description of project experience. These analyses revealed that students’ final
projects evinced high levels of engagement and showed evidence of under-
standing of program construction and algorithmic constructs that the posttest
was unable to capture. Excerpts from one such sample interview are pro-
vided in Table A4.

6. Discussion

6.1. Conceptual learning of algorithmic constructs

Based on the quantitative analyses of the results for the two studies, and the
qualitative analysis of final projects and interviews for a subset of learners
reported above, it appears that the FACT course helped all learners build a
substantial understanding of basic algorithmic flow of control in computa-
tional solutions. As these results also reveal, Study2 in a blended in-
classroom learning setting using the online version of FACT worked just as
well, if not better, than Study1, an intervention that used the face-to-face ver-
sion of the FACT curriculum, and hence is therefore deemed a “successful”

Computer Science Education 221

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

online intervention per Means, Toyama, Murphy, Bakia, and Jones (2010).
This difference could be reasonably attributed to refinements inspired by
design-based research.

The qualitative analysis of the final projects and interviews revealed that
students showed higher levels of engagement and more evidence of under-
standing of program construction and algorithmic constructs than was indi-
cated by their posttest performance.

6.2. Transfer of learning to a text-based programming context

The answer to the second research question, “Does the curriculum promote
an understanding of algorithmic concepts that goes deeper than tool-related
syntax details as measured by PFL assessments?” is a cautiously optimistic
“yes.” The results of the PFL test were promising, and in answer to the
research questions that guided this study, the students were found to be able
to transfer many ideas from the seven-week curriculum using Scratch to a
text-based programming context. They were broadly able to interpret
programs in the new context of text-based languages, although the mechanics
of some constructs (e.g. “For” loops) were difficult to grasp. The PFL test
was, in all likelihood, too difficult compared to the posttest. Not only was it
testing learners on new learning and programming in a context completely
alien to most students, it also focused mainly on loops and variables, which
were the hardest concepts for learners to grasp as evidenced by the break-
down of Scratch posttest performance by constructs. For a balanced set of
questions with robust construct validity, the PFL test should test learners on
the individual concepts taught – serial execution, variables, conditionals, and
loops – in addition to some advanced snippets of code that incorporate all
concepts. Additionally, the PFL test should be redesigned such that it does
not disadvantage learners who have difficulty with the English language.

6.3. Affective aspects of computing

In terms of interests and attitudes toward computing, neither study made a
significant difference to learners’ incoming motivational markers. Such a ceil-
ing effect has been observed in similar contexts where learners self-select into
the intervention, and come in with high levels of interest and motivation. That
said, student reactions to the videos in the “Computing is Everywhere!” unit
in both studies evidenced a growing awareness of what computer scientists
do, and the meaning of computer science as a discipline and its application in
our world. Affective indicators also suggested that this curriculum helped
them see CS in a positive, new light, and sparked curiosity to learn more.
Student perceptions shifted significantly from narrow and naïve views of CS
as a science that involves experiments or a study of computers in order to
build, fix, or improve them to a sophisticated understanding of CS as a

222 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

problem-solving discipline where computers are used as tools to make
people’s lives easier, and in creative and engaging ways, too.

6.4. The role of the classroom teacher in online FACT

In these studies, the regular classroom teacher in charge of teaching the
Computers elective did not have a CS background, and as such did not have
a deep understanding of computational concepts and programming. She was
also unfamiliar with Scratch. The researcher therefore undertook some of
the responsibilities that would normally fall on the teacher, especially for
grading Scratch assignments and projects, and providing feedback to stu-
dents, as well as administrative assistance on tracking assignment submis-
sions and aspects of online course navigation, such as explaining to students
what to do next in the course sequence, or describing the mechanics of
uploading assignments. The classroom teacher provided assistance in ensur-
ing students stayed on task and followed the required course sequence.
Sometimes she would work through the materials on her own in parallel
with the class in an effort to build her own understanding of computing and
skills in programming. Other classroom management matters that needed
attention often interrupted her sessions in online FACT. She reported using
the course on her own with her next cohort of students. In general, however,
the role of the teacher with online FACT curriculum could vary depending
on the comfort level the teacher enjoys with introductory CS content.

6.5. Methodological limitations

Statistical power was an issue due to the relatively small sample sizes in the
two studies, although this was mitigated to some extent by combining the
datasets for the correlational and regression analyses as well as the factor
analysis (as measured by the KMO scores for sampling adequacy). In gen-
eral, the study would have benefited from a better experimental setup with a
control condition where student learning in a different but comparable set-
ting could be tested using the same set of assessments. This was accom-
plished to a small extent through the preliminary exploratory studies where
students learning Scratch in a similar school in the same district were given
questions on the PFL test in addition to questions on vocabulary and
computational learning. However, this was not a control group in a strict
sense, and the surveys and questions were administered with the purpose of
testing the instruments and validating the preliminary hypotheses that few
middle school computing experiences pay attention to deeper understanding,
transfer, perceptions of computing, or vocabulary of the discipline. Although
a strict control group is difficult to implement in a real-world situation, stu-
dents working with other middle school CS curricula (such as those recently
released by Khan Academy and Code.org) could potentially constitute such
control groups in future studies.

Computer Science Education 223

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

The surveys before and after the course as well as some of the questions
on the quizzes, and many of the questions on the posttest and PFL test
required students to read large amounts of text. This was a challenge for ELL
students and learners not very fluent with English. Such students sometimes
require the help of aides in core subject classrooms – help that this classroom
did not have because it was an elective course. Some of the questions that
had appeared in the nationwide exam in Israel (Question 9, for example, as
described above) were found to be problematic. This finding has prompted a
redesign in Israel as well (I. Zur Bargury, personal communication, 6
December 2013), and some PFL test questions were open to multiple interpreta-
tions. Clearly, the assessments need to go through more rigorous processes of
validation, which involves testing the assessments in different settings.

There were threats to external validity as well. The findings cannot be
broadly generalized since the studies were conducted in only one public
school situated in a generally upper-middle class community in Northern
California. The sample sizes had a gender imbalance. Lastly, the studies were
conducted in an elective class, indicating a self-selection bias among learners
who came into the course with generally high interest and motivation.

7. Conclusion and scholarly implications

This research makes several unique contributions. It is perhaps the first
online introductory middle school curriculum that has been empirically
shown to result in learning gains (albeit only in the context in which it was
studied) to foster deeper transferable CT skills (focused on algorithmic
thinking) in middle school students. It serves as an example of MOOC
course design for K-12 learners that employs design-based research effec-
tively to refine a curriculum aiming to foster active learning by balancing
the individual and social, and online and offline, in a blended classroom set-
ting. The explicit attention devoted to teaching and assessing for PFL and
transfer, and to remedying misperceptions of computing as a discipline
through an engaging corpus of publicly available videos are also unique
aspects of this research, which could be gainfully employed in other peda-
gogies for CT. The idea of using “systems of assessments” and the creation
of a corpus of questions for assessing PFL and computational learning (in
Scratch and pseudo-code) are innovations of this research that contributes to
the broader computing education research enterprise.

Perhaps the most salient implications of this research concern the founda-
tional premise of this effort – that students as young as 12 and 13 can and
should be taught CT in addition to being made aware of computer science
and its applications in other disciplines. The middle school years are crucial
for identity building as well as cognitive development for the analytical rea-
soning required of STEM disciplines. Learners must be taught with a view
to deeper learning so that they master the core disciplinary ideas in ways

224 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

that attend to transfer of that learning to productive future efforts. Con-
sciously attending to creating bridges to future learning, and assessing for
transfer through specially designed PFL assessments are unique contribu-
tions that FACT makes to the space of disciplinary-based research devoted
to computing education.

The findings from these empirical studies also provide some crucial point-
ers for K-8 introductory computing curricula. For example, which specific
topics need extra attention based on novices’ targets of difficulty as revealed
in this research? Curricula and pedagogies need to pay special attention when
introducing learners to variables and loops, for example. The strong correla-
tion between computational learning and Math ability (as measured by the
California state test score in this research) is a critical finding, as well. As
schools across the US enact the “computing for all” mantra, children should
develop strong mathematical skills for success in computing. Given the syn-
ergies between these domains of thinking and problem solving, perhaps there
is also a case for teaching Math through computing and vice versa.

Nonetheless, this research has demographic and research design limitations
as described above. Future directions involve overcoming these limitations to
create a robust curriculum shown to work in diverse settings and with broader
audiences of middle school students and teachers across the US. Other work
in the future also involves creating a version of FACT for teacher professional
development, perhaps as a MOOC for an online, geographically dispersed
teacher audience.

As von Hippel and Tyre (1995) and Engeström (2009) rightly point out
about the essential nature of design-based research, any curricular innovation
is a continuous process, and any particular version of it is simply a point
along the journey. This is true of FACT as one such design-based research
enterprise. Although FACT currently embodies a learning theory-informed,
pedagogically robust design of a curriculum for computing in middle school,
it still has room for improvement. This research represents only the first two
iterations of what should be seen as an ongoing systematic design-based
research effort in diverse settings and with broader audiences of middle
school students and teachers.

Acknowledgments
This paper is based on a PhD dissertation completed by Grover under the direction of Pea
and Cooper and draws on Grover’s prior doctoral work under the supervision of Pea. The
work benefitted from the guidance of the members of the dissertation committee: Profs
Daniel Schwartz, Brigid Barron, and Mehran Sahami. The author would like to acknowledge
Stanford’s Office of the Vice Provost for Online Learning and members of the Stanford
OpenEdX team for their support in creating and running the online course on OpenEdX.
The author is grateful for suggestions from Prof. Mark Guzdial from Georgia Institute of
Technology’s College of Computing. Lastly, the author would like to acknowledge the sup-
port of the school district, principal, classroom teacher, and students who participated (but
remain anonymous) in this dissertation research.

Computer Science Education 225

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by funding from the National Science Foundation [NSF-0835854,
NSF-1343227].

Notes
1. An IFrame (Inline Frame) is an HTML document embedded inside another HTML

document on a website. The IFrame HTML element is often used to insert content from
another source, into a web page. In this instance, it was used to embed a Scratch win-
dow below an instructional video.

2. The coding and inter-rater reliability calculations were typically completed together for
datasets from both Study1 and Study2 to ensure consistency in the coding process
across the two studies. All the responses were initially open-coded. The coding
categories were arrived at in discussion between the 2 coders. A single response could
be coded for the presence of more than one category. One set of responses was coded
independently first (specifically, the pre-course responses in Study2), and then the coders
met to discuss differences and interpretations of the codes. Finally, the next three sets
(pre- and post-responses of Study1, post-responses of Study2) were coded. There was
some confusion concerning the “Use of a computer as a tool” category, in which one
coder interpreted any mention of creation of technology products as evidence of the lear-
ner talking about a computer scientist using the “computer as a tool”, as opposed to the
interpretation that the learner’s response more explicitly reflected the notion that the
computer scientist used the computer to make people’s lives easier or convenient or bet-
ter (to distinguish from the naïve “computer-centric” view of the computer only being
“studied” or “fixed” or “improved”). It is our belief that this confusion was never com-
pletely resolved well, and resulted in significant differences for that coding category.

References
Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Jour-

nal of the Learning Sciences, 13(1), 1–14.
Barron, B. (2004). Learning ecologies for technological fluency: Gender and experience dif-

ferences. Journal of Educational Computing Research, 31(1), 1–36.
Barron, B., & Darling-Hammond, L. (2008). How can we teach for meaningful learning? In

L. Darling-Hammond, B. Barron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage, T. D.
Zimmerman, … J. L. Tilson (Eds.), Powerful learning: What we know about teaching
for understanding (pp. 11–70). San Francisco, CA: Jossey-Bass.

Barron, B., Martin, C., Roberts, E., Osipovich, A., & Ross, M. (2002). Assisting and assess-
ing the development of technological fluencies: Insights from a project-based approach
to teaching computer science. In Proceedings of the conference on computer support for
collaborative learning: Foundations for a CSCL community (pp. 668–669). Boulder,
CO: International Society of the Learning Sciences.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011).
Recognizing computational thinking patterns. In Proceedings of the 42nd ACM technical
symposium on computer science education (pp. 245–250). New York, NY: ACM.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged:
School students doing real computing without computers. The New Zealand Journal of
Applied Computing and Information Technology, 13, 20–29.

226 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Bell, T., Andreae, P., & Robins, A. (2012). Computer science in NZ high schools: The first
year of the new standards. In Proceedings of the 43rd ACM technical symposium on
computer science education. Raleigh, NC.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Educa-
tion, 5, 7–74.

Bornat, R. (1987). Programming from first principles. Upper Saddle River, NJ: Prentice Hall
International.

Bransford, J. D., Brown, A., & Cocking, R. (Eds.). (2000). How people learn: Mind, brain,
experience and school, expanded edition. Washington, DC: National Academy Press.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of
the American Educational Research Association. Vancouver, Canada.

Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of learners. In
K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom prac-
tice (pp. 229–272). Cambridge: MIT Press.

Brown, J. S., Collins, A., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the
crafts of reading, writing, and mathematics. In Knowing, learning, and instruction:
Essays in honor of Robert Glaser (p. 487). Hillsdale, NJ: Lawrence Erlbaum Associates.

Campe, S., Denner, J., & Werner, L. (2013). Intentional computing: Getting the results you
want from game programming classes. Journal of Computing Teachers.

Carter, L. (2006). Why students with an apparent aptitude for computer science don’t choose
to major in computer science. In Proceedings of SIGCSE (pp. 27–31). ACM, Houston,
TX, USA.

Caspersen, M. E., & Nowack, P. (2013). Computational thinking and practice: A generic
approach to computing in Danish high schools. In Proceedings of the fifteenth Aus-
tralasian computing education conference (Vol. 136, pp. 137–143). Sydney: Australian
Computer Society.

Conley, D. T., & Darling-Hammond, L. (2013). Creating systems of assessment for deeper
learning. Retrieved from http://scee.groupsite.com/uploads/files/x/000/09e/76f/creating-
systems-assessment-deeper-learning.pdf

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer:
Alice 3 to Java. In Proceedings of the 43rd ACM technical symposium on computer
science education (pp. 141–146). New York, NY: ACM.

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323, 66–69.
Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:

Can they be used to measure understanding of computer science concepts? Computers &
Education, 58, 240–249.

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new exam question: Parsons
problems. In Proceedings of the fourth international workshop on computing education
research (pp. 113–124). New York, NY: ACM.

DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. Cambridge:
MIT Press.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2, 57–73.

Engeström, Y. (2009). The future of activity theory: A rough draft. In A. Sannino, H.
Daniels, & K. D. Gutierrez (Eds.), Learning and expanding with activity theory (pp.
303–328). New York, NY: Cambridge University Press.

Engle, R. A., Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive framing
promote transfer? Several proposed explanations and a research agenda for investigating
them. Educational Psychologist, 47, 215–231.

Ericson, B., & McKlin, T. (2012). Effective and sustainable computing summer camps. In
Proceedings of the 43rd ACM technical symposium on computer science education (pp.
289–294). New York, NY: ACM.

Fidge, C., & Teague, D. (2009). Losing their marbles: Syntax-free programming for assess-
ing problem-solving skills. In Proceedings of the eleventh Australasian conference on
computing education-volume 95 (pp. 75–82). Sydney: Australian Computer Society.

Computer Science Education 227

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://scee.groupsite.com/uploads/files/x/000/09e/76f/creating-systems-assessment-deeper-learning.pdf
http://scee.groupsite.com/uploads/files/x/000/09e/76f/creating-systems-assessment-deeper-learning.pdf

Fields, D. A., Giang, M., & Kafai, Y. (2014). Programming in the wild: Trends in youth computa-
tional participation in the online Scratch community. In Proceedings of the 9th workshop in
primary and secondary computing education (pp. 2–11). New York, NY: ACM.

Fields, D. A., Searle, K. A., Kafai, Y. B., & Min, H. S. (2012). Debuggems to assess student
learning in e-textiles. Proceedings of the 43rd SIGCSE technical symposium on com-
puter science education. ACM Press, New York, NY.

Fincher, S. (1999). What are we doing when we teach programming? In Frontiers in Educa-
tion Conference, 1999 (Vol. 1, pp. 12A4-1–12A4-5). New York, NY: IEEE.

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role
for analogical encoding. Journal of Educational Psychology, 95, 393–408.

Glass, A. L., & Sinha, N. (2013). Providing the answers does not improve performance on a
college final exam. Educational Psychology, 33, 87–118.

Goode, J., Chapman, G., Margolis, J., Landa, J., Ullah, T., Watkins, D., & Stephenson, C.
(2013). Exploring computer science. Retrieved from http://www.exploringcs.org/curriculum

Greening, T. (1998). Computer science: Through the eyes of potential students. In Proceed-
ings of the 3rd Australasian conference on computer science education (pp. 145–154).
ACM, The University of Queensland, Australia.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the
field. Educational Researcher, 42, 38–43.

Guzdial, M. (2004). Programming environments for novices. Computer Science Education
Research, 2004, 127–154.

Hewner, M. (2013). Undergraduate conceptions of the field of computer science. In Proceed-
ings of the ninth annual international ACM conference on international computing
education research (pp. 107–114). New York, NY: ACM.

Hewner, M., & Guzdial, M. (2008). Attitudes about computing in postsecondary graduates.
In Proceeding of ICER 2008 (pp. 71–78). ACM, Sydney, Australia.

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive logo programs.
Journal of Educational Computing Research, 1, 235–243.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development
of programming ability and thinking skills in high school students. Journal of Educa-
tional Computing Research, 2, 429–458.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L. (2011).
Computational thinking for youth in practice. ACM Inroads, 2, 32–37.

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics stan-
dards with programming curriculum. In Proceedings of the 43rd ACM technical sympo-
sium on computer science education (pp. 57–62). New York, NY: ACM.

Lewis, C. M. (2013). Online curriculum. Retrieved from http://colleenmlewis.com/Scratch
Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between

explaining, tracing and writing skills in introductory programming. In ACM SIGCSE Bul-
letin (Vol. 41(3), pp. 161–165). New York, NY: ACM.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading,
tracing and writing skills in introductory programming. In Proceedings of the fourth
international workshop on computing education research (pp. 101–112). New York, NY:
ACM.

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). Programming by
choice: Urban youth learning programming with Scratch. Proceedings of SIGCSE ‘08.
ACM Press, New York, NY.

Markus, H., & Nurius, P. (1986). Possible selves. American Psychologist, 41, 954–969.
Martin, C. D. (2004). Draw a computer scientist. Working group reports on innovation and

technology in computer science education (ITiCSE-WGR’04) (pp. 11–12). New York,
NY: ACM.

Mayer, R. E. (1989). The psychology of how novices learn computer programming. In E.
Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 129–159).
Hillsdale, NJ: Lawrence Erlbaum.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning?
American Psychologist, 59, 14–19.

228 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://www.exploringcs.org/curriculum
http://colleenmlewis.com/Scratch

Means, B., Toyama, Y., Murphy, R., Bakia, M., & Jones, K. (2010). Evaluation of
evidence-based practices in online learning: A meta-analysis and review of online
learning studies. Washington, DC: US Department of Education.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2010). Learning computer science con-
cepts with Scratch. In Proceedings of the sixth international workshop on computing
education research (ICER ‘10) (pp. 69–76). New York, NY: ACM.

Mitchell, A., Purchase, H. C., & Hamer, J. (2009). Computing science: What do pupils
think? In Proceedings of the 14th annual conference on innovation and technology in
computer science education (ITiCSE’09) (p. 353). New York, NY: ACM.

Monroy-Hernández, A., & Resnick, M. (2008). Feature: Empowering kids to create and
share programmable media. Interactions, 15, 50–53.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new instruc-
tional approach. ACM SIGCSE Bulletin, 36, 75–79.

Myers, B. A., Ko, A. J., & Burnett, M. M. (2006). Invited research overview: End-user pro-
gramming. In CHI’06 extended abstracts on Human factors in computing systems (pp.
75–80). New York, NY: ACM.

National Research Council. (2011). Committee for the workshops on computational thinking:
Report of a workshop of pedagogical aspects of computational thinking. Washington,
DC: National Academies Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY:
Basic Books.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism
(pp. 1–11). Norwood, NJ: Ablex.

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun and effective learning
tool for first programming courses. In Proceedings of the 8th Australasian conference on
computing education (Vol. 52, pp. 157–163). Sydney: Australian Computer Society.

Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theo-
retical concepts for learning, education, and human activity. Journal of the Learning
Sciences, 13, 423–451.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer pro-
gramming. New Ideas in Psychology, 2, 137–168.

Pea, R. D., Soloway, E., & Spohrer, J. (1987). The buggy path to the development of pro-
gramming expertise. Focus on Learning Problems in Mathematics, 9, 5–30.

Pellegrino, J. W., & Hilton, M. L. (Eds.). (2013). Education for life and work: Developing
transferable knowledge and skills in the 21st century. Washington, DC: National Acade-
mies Press.

Perkins, D. N., & Simmons, R. (1988). Patterns of misunderstanding: An integrative model
for science, math, and programming. Review of Educational Research, 58, 303–326.

Phillips, P., Cooper, S., & Stephenson, C. (2012). Computer science K-8: Building a strong
foundation. CSTA voice special issue, 13–14.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the develop-
ment of a checklist for getting computational thinking into public schools. In Proceed-
ings of the 41st acm technical symposium on computer science education (SIGCSE ‘10)
(pp. 265–269). New York, NY: ACM Press.

Reynolds, R., & Caperton, I. H. (2011). Contrasts in student engagement, meaning-making,
dislikes, and challenges in a discovery-based program of game design learning. Educa-
tional Technology Research and Development, 59, 267–289.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13, 137–172.

Royal Society. (2012). Shut down or restart: The way forward for computing in UK schools.
Retrieved from http://royalsociety.org/ education/policy/computing-in-schools/report/

Rutstein, D., Snow, E., & Bienkowski, M. (2014). Computational thinking practices: Analyz-
ing and modeling a critical domain in computer science education. Paper presented at
the 2014 annual meeting of the American Educational Research Association (AERA),
Philadelphia, PA.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction,
16, 475–5223.

Computer Science Education 229

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://royalsociety.org/ education/policy/computing-in-schools/report/

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer.
In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp.
1–51). Greenwich, CT: Information Age.

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus
inventing with contrasting cases: The effects of telling first on learning and transfer.
Journal of Educational Psychology, 103, 759.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden
efficiency of encouraging original student production in statistics instruction. Cognition
and Instruction, 22, 129–184.

Scott, J. (2013). The royal society of Edinburgh/British computer society computer science exem-
plification project. In Proceedings of ITiCSE’13 (pp. 313–315). New York, NY: ACM.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15, 4–14.

SRI International. (2013). Exploring CS curricular mapping. Retrieved from http://pact.sri.
com/?page_id=1380

Tai, R., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Career choice: Enhanced: Planning
early for careers in science. Science, 312, 1143–1144.

Taub, R., Ben-Ari, M., & Armoni, M. (2009). The effect of CS unplugged on middle-school
students’ views of CS. In SIGCSE Bulletin (Vol. 41(3), pp. 99–103). New York, NY:
ACM.

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013). Accelerating K-12
computational thinking using scaffolding, staging, and abstraction. In Proceeding of the
44th ACM technical symposium on computer science education (pp. 609–614). New
York, NY: ACM.

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011). Extreme apprenticeship method in
teaching programming for beginners. In Proceedings of the 42nd ACM technical sympo-
sium on computer science education (pp. 93–98). New York, NY: ACM.

von Hippel, E., & Tyre, M. J. (1995). How learning by doing is done: Problem identification
in novel process equipment. Research Policy, 24(1), 1–12.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance
assessment: Measuring computational thinking in middle school. In Proceedings of the
43rd ACM technical symposium on computer science education (SIGCSE ‘12) (pp. 215–
220). New York, NY: ACM.

Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Association for supervision
and curriculum development. Alexandria, VA: Association for Supervision and Curricu-
lum Development.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49, 33–36.
Wing, J. (2011). Research notebook: Computational thinking – What and why? The Link

Magazine, Spring. Carnegie Mellon University, Pittsburgh, PA. Retrieved from http://
link.cs.cmu.edu/article.php?a=600

Yardi, S., & Bruckman, A. (2007). What is computing? Bridging the gap between teenagers’
perceptions and graduate students’ experiences. In Proceedings of ICER 2007
(pp. 39–50). New York, NY: ACM.

Zur Bargury, I. (2012). A new curriculum for junior-high in computer science. In Proceed-
ings of the 17th ACM annual conference on innovation and technology in computer
science education. (pp. 204–208). New York, NY: ACM.

Zur-Bargury, I., Pârv, B., & Lanzberg, D. (2013). A nationwide exam as a tool for improv-
ing a new curriculum. In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education (pp. 267–272). New York, NY: ACM.

230 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

http://pact.sri.com/?page_id=1380
http://pact.sri.com/?page_id=1380
http://link.cs.cmu.edu/article.php?a=600
http://link.cs.cmu.edu/article.php?a=600

Appendix 1. Additional Figures and Tables

Figure A1. Course organized into four learning sequences for each day of the week.

Figure A2. Quiz question requiring students to understand code and answer questions.

Computer Science Education 231

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Figure A3. Comparison of student performance in Study1 and Study2 vs. 2012
Israeli students’ results (on the six questions from the Israel national exam used in
the posttest).

232 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Table A1. Course design revisions in second iteration of design-based
research.

Study1 Study2

Medium of
instruction

Face-to-face with one online unit All units online on OpenEdx used
in blended in-classroom setting

Duration 6 weeks 6 weeks + 1 week for final project
Student
interactions

Restricted to open-ended pair
projects and helping others fix
Scratch assignments

Additional student interactions in
answering thought questions; in
addition to mid-course and
culminating project in pairs

“Computing is
Everywhere!”
video corpus

Included videos that were voted
down (e.g. “iPhone as a hearing
aid,” computation and big data for
cancer detection)

More engaging corpus of
“Computing is Everywhere”
videos, including Google’s
driverless car; Boston dynamics’
Big Dog robot; IBM Watson on
Jeopardy!

“Computing is
Everywhere!”
video use

Restricted to Week 1 only In addition to the first week
(during Unit 1), one such video
was added to the materials for
Week 2 to 6, to continue giving
learners more examples of cool
applications of CS (e.g. Mars
Rover singing Happy Birthday to
itself; Scratch and Xbox Kinect;
and others.)

Videos created In pilot online Unit 8 videos
between 4 and 12 min (average
~8 min) in length

~60 videos, between 1 and 5 min
in length

Quizzes Created on school LMS, auto-
graded

Created on Stanford OpenEdX,
auto-graded, performance data
captured in OpenEdX dashboards

FAQ for online
course

None Created a detailed FAQ section

Assessments Pretest; posttest; PFL test Ongoing quiz scores; Pretest;
Posttest; PFL test; Final projects
and project presentations; artifact-
based student interviews

Sequencing of
content

Pseudo-code and problem-solving
paradigm introduced in Week 2

Pseudo-code and problem-solving
paradigm introduced in Week 4

Loops and
variables

9 days dedicated to these topics 12 days dedicated to these topics

Boolean logic Introduced with conditionals Introduced with repeat until
construct (before conditionals)

Scratch
examples and
assignments

Used more games, more creative
artifacts, more engaging
assignment projects (e.g. dropped
assign a grade, simple generic
polygon maker; added 4-Quadrant
Art, Pong)

Vocabulary
development

No special effort beyond providing
definition while introducing concept

Created a “word wall” course tab
where terms and definitions were
added. The teacher also printed
this out and pasted on wall just
outside classroom door

(Continued)

Computer Science Education 233

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Table A1. (Continued).

Study1 Study2

Final project Not a requirement (due to
constraints imposed by end-of-
school year)

Elaborate final project requiring
students to also document the
experience from pre-project
planning to post-project reflections

Final projects
demo

Small informal demos with students
who chose to share

Final Projects “Expo Day” with
each group demonstrating their
project to the class

Student
interviews

None In order to assess students’
understanding of their programs
and thinking behind the code,
students were interviewed on the
workings of their final project
(especially since most students did
their projects in pairs). It was also
done to compare and contrast
students’ CT growth as assessed
by the posttest

234 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Table A2. PFL test: new syntax specification, questions, their goals, and results
describing student responses.

-

Computer Science Education 235

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

236 S. Grover et al.

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

Table A3. Sample “artifact-based” interview (X = Interviewer; I = Interviewee).

Interpretation/question posed
Student quote(s) or exchanges with
interviewer (X)

Connected final project idea with event in
personal life

“it was becoming Halloween so we thought
that we should do like a scary maze … This
was the only scary maze that I knew about,
coz my cousin made me play it”

“What made you think of the Insidious
song?”

“Ooh. it seems … it’s a creepy little song.
It’s like … yeah …”

Able to describe what the code did, referred
to the code elements while talking.

e.g. we switched it to the uh.. first maze …
and then we put the sprite to the beginning
… and then we did a Forever loop … and
we did “If … the key up arrow is pressed …
change y by 1; and if the down key is
pressed, change y by negative … then if
touching black uh … you re-start it to the
beginning, and um if you touch red you um
you um change backgrounds to the second
maze”

Knew what the bug was; showed it and had
some idea what could fix it without X’s
help; realized that a variable was needed
to keep track of the level and knew where
that variable would be set and updated

And as you go to the black, it just takes you
down … It’s coz we had to like put
something in between and … it switches the
backdrop. so like in between one of these
things … or … if./ else I think, you put in
there.
X: where would you change that variable …
?
I: whenever it touches the red …
X: very good! and then when it touches the
black … ?
I: It depends on what level it is, it would go
over there …

Found the project to be fun and creative X: So in general if you had to say whether it
was fun or challenging or difficult or easy or
creative or boring which ones would you
choose
I: Fun
X: anything else?
I: Creative
X: What was the creative part of it?
I: Like putting, like, the face at the last, and
the screaming …

Computer Science Education 237

D
ow

nl
oa

de
d

by
 [

M
r

R
oy

 P
ea

]
at

 0
8:

37
 1

7
M

ay
 2

01
5

	Abstract
	1. Introduction
	2. Related work
	2.1. Misperceptions of computing among K-12 students
	2.2. Developing CT skills in middle school

	3. Research framework
	3.1. Teaching programming requires a pedagogical approach
	3.2. Rigor in assessment of CT skills

	4. Research methodology
	4.1. Curriculum design: content, pedagogy and assessments
	4.1.1. FACT content
	4.1.2. FACT pedagogy
	4.1.3. FACT`s systems of assessments

	4.2. Participants and procedures
	4.2.1. Designing the blended classroom experience in Study2

	4.3. Data measures

	5. Analysis and results
	5.1. Research question #1: learning of algorithmic constructs
	5.2. Research question #2: PFL transfer test
	5.3. Research question #3: perceptions of computing
	5.4. Other results
	5.5. Qualitative analysis
	5.5.1 Student interviews

	6. Discussion
	6.1. Conceptual learning of algorithmic constructs
	6.2. Transfer of learning to a text-based programming context
	6.3. Affective aspects of computing
	6.4. The role of the classroom teacher in online FACT
	6.5. Methodological limitations

	7. Conclusion and scholarly implications
	Acknowledgments
	 Disclosure statement
	Funding
	Notes
	References
	 Appendix 1. Additional Figures and Tables

